Lagarias, Montgomery, et Odlyzko ont démontré qu’il existe une constante absolue effectivement calculable telle que pour chaque extension finie de , chaque extension galoisienne finie de à groupe de Galois , et chaque classe de conjugaison de , il existe un idéal premier de qui est nonramifié dans , pour lequel , pour lequel est un nombre premier rationel, et qui satisfait . Dans cet article nous démontrons sans aucune restriction que si , en suivant la méthode developpée par Lagarias, Montgomery, et Odlyzko.
Lagarias, Montgomery, and Odlyzko proved that there exists an effectively computable absolute constant such that for every finite extension of , every finite Galois extension of with Galois group and every conjugacy class of , there exists a prime ideal of which is unramified in , for which , for which is a rational prime, and which satisfies . In this paper we show without any restriction that if , using the approach developed by Lagarias, Montgomery, and Odlyzko.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3274
Keywords: The Chebotarev density theorem, Dedekind zeta functions, the Deuring–Heilbronn phenomenon
Mot clés : théorème de densité de Chebotarev, fonction de zêta de Dedekind, phénomène de Deuring–Heilbronn
Ahn, Jeoung-Hwan 1 ; Kwon, Soun-Hi 1
@article{AIF_2019__69_3_1411_0, author = {Ahn, Jeoung-Hwan and Kwon, Soun-Hi}, title = {An explicit upper bound for the least prime ideal in the {Chebotarev} density theorem}, journal = {Annales de l'Institut Fourier}, pages = {1411--1458}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {3}, year = {2019}, doi = {10.5802/aif.3274}, zbl = {1275.11144}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3274/} }
TY - JOUR AU - Ahn, Jeoung-Hwan AU - Kwon, Soun-Hi TI - An explicit upper bound for the least prime ideal in the Chebotarev density theorem JO - Annales de l'Institut Fourier PY - 2019 SP - 1411 EP - 1458 VL - 69 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3274/ DO - 10.5802/aif.3274 LA - en ID - AIF_2019__69_3_1411_0 ER -
%0 Journal Article %A Ahn, Jeoung-Hwan %A Kwon, Soun-Hi %T An explicit upper bound for the least prime ideal in the Chebotarev density theorem %J Annales de l'Institut Fourier %D 2019 %P 1411-1458 %V 69 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3274/ %R 10.5802/aif.3274 %G en %F AIF_2019__69_3_1411_0
Ahn, Jeoung-Hwan; Kwon, Soun-Hi. An explicit upper bound for the least prime ideal in the Chebotarev density theorem. Annales de l'Institut Fourier, Tome 69 (2019) no. 3, pp. 1411-1458. doi : 10.5802/aif.3274. https://aif.centre-mersenne.org/articles/10.5802/aif.3274/
[1] Some explicit zero-free regions for Hecke -functions, J. Number Theory, Volume 145 (2014), pp. 433-473 | DOI | MR | Zbl
[2] The least quadratic non residue, Ann. Math., Volume 55 (1952), pp. 65-72 | DOI | MR | Zbl
[3] Explicit bounds for primality testing and related problems, Math. Comput., Volume 55 (1990) no. 191, pp. 355-380 | DOI | MR | Zbl
[4] Explicit bounds for primes in residue classes, Math. Comput., Volume 65 (1996) no. 216, pp. 1717-1735 | DOI | MR | Zbl
[5] Le grand crible dans la théorie analytique des nombres, Astérisque, 18, Société Mathématique de France, 1974, i+87 pages (Avec une sommaire en anglais) | MR | Zbl
[6] The distribution of quadratic residues and non-residues, Mathematika, Volume 4 (1957), pp. 106-112 | DOI | MR | Zbl
[7] On the least prime in an arithmetical progression, Sci. Sin., Volume 14 (1965), pp. 1868-1871 | MR
[8] On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet’s -functions. V, International Symposium in Memory of Hua Loo Keng, Vol. I (Beijing, 1988), Springer, 1991, pp. 19-42 | DOI | MR | Zbl
[9] Une remarque sur la dérivée logarithmique de la fonction zêta de Riemann, Colloq. Math., Volume 53 (1987) no. 2, pp. 333-335 | DOI | MR | Zbl
[10] Über den Tschebotareffschen Dichtigkeitssatz, Math. Ann., Volume 110 (1935) no. 1, pp. 414-415 | DOI | MR | Zbl
[11] Les nombres premiers, Publications de l’Université de Nancago, IX, Hermann, 1975, xiv+442 pages (En collaboration avec Michel Mendès France) | MR | Zbl
[12] On Linnik’s constant, Acta Arith., Volume 39 (1981) no. 2, pp. 163-179 | DOI | MR | Zbl
[13] On the least prime in certain arithmetic progressions, J. Lond. Math. Soc., Volume 41 (1990) no. 2, pp. 193-200 | DOI | MR | Zbl
[14] Zero-free regions for Dirichlet -functions, and the least prime in an arithmetic progression, Proc. Lond. Math. Soc., Volume 64 (1992) no. 2, pp. 265-338 | DOI | MR | Zbl
[15] Zeta-functions and -functions, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Academic Press Inc., 1967, pp. 204-230 | MR
[16] On the Siegel–Tatuzawa theorem, Acta Arith., Volume 38 (1980) no. 2, pp. 167-174 | DOI | MR | Zbl
[17] The distribution of sequences in arithmetic progressions, Proceedings of the International Congress of Mathematicians (Vancouver, 1974), Vol. 1, Canadian Mathematical Congress, 1975, pp. 357-364 | MR | Zbl
[18] On Linnik’s constant, Math. Scand., Volume 41 (1977) no. 1, pp. 45-62 | DOI | MR | Zbl
[19] Une région explicite sans zéros pour la fonction de Riemann, Acta Arith., Volume 117 (2005) no. 4, pp. 303-339 | DOI | MR | Zbl
[20] Explicit zero-free regions for Dedekind zeta functions, Int. J. Number Theory, Volume 8 (2012) no. 1, pp. 125-147 | DOI | MR | Zbl
[21] Explicit zero density theorems for Dedekind zeta functions, J. Number Theory, Volume 132 (2012) no. 4, pp. 748-775 | DOI | MR | Zbl
[22] The least prime in a conjugacy class, C. R. Math. Acad. Sci., Soc. R. Can., Volume 22 (2000) no. 4, pp. 129-146 | MR | Zbl
[23] A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math., Volume 54 (1979) no. 3, pp. 271-296 | DOI | MR | Zbl
[24] Effective versions of the Chebotarev density theorem, Algebraic number fields: -functions and Galois properties (Durham, 1975), Academic Press Inc., 1977, pp. 409-464 | MR | Zbl
[25] Conditional bounds for the least quadratic non-residue and related problems, Math. Comput., Volume 84 (2015) no. 295, pp. 2391-2412 | DOI | MR | Zbl
[26] Corrigendum to “Conditional bounds for the least quadratic non-residue and related problems”, Math. Comput., Volume 86 (2017) no. 307, pp. 2551-2554 | DOI | MR | Zbl
[27] Algebraische Zahlen, 1927
[28] Algebraic number theory, Graduate Texts in Mathematics, 110, Springer, 1994, xiv+357 pages | DOI | MR | Zbl
[29] On the least prime in an arithmetic progression. I. The basic theorem, Mat. Sb., N. Ser., Volume 15(57) (1944), pp. 139-178 | MR | Zbl
[30] On the least prime in an arithmetic progression. II. The Deuring–Heilbronn phenomenon, Mat. Sb., N. Ser., Volume 15(57) (1944), pp. 347-368 | MR | Zbl
[31] Minoration au point des fonctions et détermination des corps sextiques abéliens totalement imaginaires principaux, Acta Arith., Volume 62 (1992) no. 2, pp. 109-124 | DOI | MR | Zbl
[32] An explicit lower bound on moduli of Dirichlet -functions at , J. Ramanujan Math. Soc., Volume 30 (2015) no. 1, pp. 101-113 | MR | Zbl
[33] Explicit upper bounds for residues of Dedekind zeta functions, Mosc. Math. J., Volume 15 (2015) no. 4, pp. 727-740 | DOI | MR | Zbl
[34] Real zeros of Dedekind zeta functions, Int. J. Number Theory, Volume 11 (2015) no. 3, pp. 843-848 | DOI | MR | Zbl
[35] A reduction of the Čebotarev density theorem to the cyclic case, Acta Arith., Volume 15 (1968), pp. 45-47 | DOI | MR | Zbl
[36] Explicit zero-free regions for Dirichlet -functions, J. Number Theory, Volume 19 (1984) no. 1, pp. 7-32 | DOI | MR | Zbl
[37] Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function, J. Number Theory, Volume 157 (2015), pp. 329-349 | DOI | MR | Zbl
[38] The least prime which does not split completely, Forum Math., Volume 6 (1994) no. 5, pp. 555-565 | DOI | MR | Zbl
[39] Class field theory, Grundlehren der Mathematischen Wissenschaften, 280, Springer, 1986, viii+140 pages | DOI | MR | Zbl
[40] On conductors and discriminants, Algebraic number fields: -functions and Galois properties (Durham, 1975), Academic Press Inc., 1977, pp. 377-407 | MR | Zbl
[41] Versions effectives du théorème de Chebotarev sous l’hypothèse de Riemann généralisée, Journees arithmétiques de Luminy (1978) (Astérisque), Volume 61, Société Mathématique de France, 1979, pp. 165-167 | Zbl
[42] On the least prime in an arithmetical progression, Sci. Record, New Ser., Volume 1 (1957), pp. 311-313 | MR | Zbl
[43] A note on the least prime in an arithmetic progression, J. Number Theory, Volume 12 (1980) no. 2, pp. 218-223 | DOI | MR | Zbl
[44] Approximate formulas for some functions of prime numbers, Ill. J. Math., Volume 6 (1962), pp. 64-94 | DOI | MR | Zbl
[45] Sharper bounds for the Chebyshev functions and , Math. Comput., Volume 29 (1975), pp. 243-269 (Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday) | DOI | MR | Zbl
[46] Corps locaux, Publications de l’Université de Nancago, VIII, Hermann, 1968, 245 pages | MR | Zbl
[47] Quelques applications du théorème de densité de Chebotarev, Publ. Math., Inst. Hautes Étud. Sci. (1981) no. 54, pp. 323-401 | MR | Zbl
[48] Some effective cases of the Brauer–Siegel theorem, Invent. Math., Volume 23 (1974), pp. 135-152 | DOI | MR | Zbl
[49] The zeros of the Riemann zeta-function, Mat. Zametki, Volume 8 (1970), pp. 419-429 | MR | Zbl
[50] Chebotarëv and his density theorem, Math. Intell., Volume 18 (1996) no. 2, pp. 26-37 | DOI | MR | Zbl
[51] An explicit bound for the least prime ideal in the Chebotarev density theorem, Algebra Number Theory, Volume 11 (2017) no. 5, pp. 1135-1197 | DOI | MR | Zbl
[52] An improved upper bound for the error in the zero-counting formulae for Dirichlet -functions and Dedekind zeta-functions, Math. Comput., Volume 84 (2015) no. 293, pp. 1439-1450 | DOI | MR | Zbl
[53] Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören, Math. Ann., Volume 95 (1926) no. 1, pp. 191-228 | DOI | MR
[54] On a general theorem concerning the distribution of the residues and non-residues of powers, Trans. Am. Math. Soc., Volume 29 (1927) no. 1, pp. 209-217 | DOI | MR | Zbl
[55] On the least prime in an arithmetic progression, Acta Math. Sin., Volume 29 (1986) no. 6, pp. 826-836 | MR | Zbl
[56] On the least prime in an arithmetic progression, Acta Math. Sin., New Ser., Volume 7 (1991) no. 3, pp. 279-289 A Chinese summary appears in Acta Math. Sin. 8 (1992), no. 4, p. 575 | DOI | MR | Zbl
[57] The least prime ideal, J. Reine Angew. Math., Volume 338 (1983), pp. 56-94 | DOI | MR | Zbl
[58] A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge Mathematical Library, Cambridge University Press, 1996, vi+608 pages | DOI | MR | Zbl
[59] Théorème de Chebotarev effectif (2013) (https://arxiv.org/abs/1311.5715v1)
[60] Intersection arithmétique et problème de Lehmer elliptique, Ph. D. Thesis, Université de Bordeaux (France) (2015)
[61] On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet -functions, Acta Arith., Volume 150 (2011) no. 1, pp. 65-91 | DOI | MR | Zbl
[62] Explicit estimates for the zeros of Hecke -functions, J. Number Theory, Volume 162 (2016), pp. 312-375 | DOI | MR | Zbl
[63] Bounding the least prime ideal in the Chebotarev density theorem, Funct. Approximatio, Comment. Math., Volume 57 (2017) no. 1, pp. 115-142 | DOI | MR | Zbl
Cité par Sources :