Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics
[Distorsion géodésique du volume et courbure de Ricci pour des dynamiques hamiltoniennes]
Annales de l'Institut Fourier, Tome 69 (2019) no. 3, pp. 1187-1228.

On considère la variation d’un volume lisse le long des extrema d’un problème variationnel avec contraintes non holonômes et lagrangien de type action. On introduit un nouvel invariant, appelé derivée canonique du volume, qui décrit l’interaction entre la forme volume et la dynamique. On montre comment cet invariant, avec des invariants de type courbure associés à la dynamique, apparaissent dans le développement asymptotique du volume. Cela généralise le développement classique du volume riemannien le long du flot géodésique en termes de la courbure de Ricci à une vaste classe de flots hamiltoniens, notamment tous les flots géodésiques sous-riemanniens.

We study the variation of a smooth volume form along extremals of a variational problem with nonholonomic constraints and an action-like Lagrangian. We introduce a new invariant, called volume geodesic derivative, describing the interaction of the volume with the dynamics and we study its basic properties. We then show how this invariant, together with curvature-like invariants of the dynamics, appear in the asymptotic expansion of the volume. This generalizes the well-known expansion of the Riemannian volume in terms of Ricci curvature to a wide class of Hamiltonian flows, including all sub-Riemannian geodesic flows.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3268
Classification : 53C17, 53B21, 53B15
Keywords: volume, geodesics, Ricci curvature, Hamiltonian systems, sub-Riemannian geometry
Mot clés : volume, géodésiques, courbure de Ricci, systèmes Hamiltoniens, géométrie sous-riemannienne

Agrachev, Andrei A. 1, 2 ; Barilari, Davide 3 ; Paoli, Elisa 1

1 SISSA Via Bonomea 265 Trieste (Italy)
2 Steklov Math. Inst. Moscow (Russia)
3 IMJ-PRG, UMR CNRS 7586 Université Paris-Diderot Batiment Sophie Germain, Case 7012 75205 Paris Cedex 13 (France)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_3_1187_0,
     author = {Agrachev, Andrei A. and Barilari, Davide and Paoli, Elisa},
     title = {Volume geodesic distortion and {Ricci} curvature for {Hamiltonian} dynamics},
     journal = {Annales de l'Institut Fourier},
     pages = {1187--1228},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {3},
     year = {2019},
     doi = {10.5802/aif.3268},
     zbl = {07067429},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3268/}
}
TY  - JOUR
AU  - Agrachev, Andrei A.
AU  - Barilari, Davide
AU  - Paoli, Elisa
TI  - Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 1187
EP  - 1228
VL  - 69
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3268/
DO  - 10.5802/aif.3268
LA  - en
ID  - AIF_2019__69_3_1187_0
ER  - 
%0 Journal Article
%A Agrachev, Andrei A.
%A Barilari, Davide
%A Paoli, Elisa
%T Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics
%J Annales de l'Institut Fourier
%D 2019
%P 1187-1228
%V 69
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3268/
%R 10.5802/aif.3268
%G en
%F AIF_2019__69_3_1187_0
Agrachev, Andrei A.; Barilari, Davide; Paoli, Elisa. Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics. Annales de l'Institut Fourier, Tome 69 (2019) no. 3, pp. 1187-1228. doi : 10.5802/aif.3268. https://aif.centre-mersenne.org/articles/10.5802/aif.3268/

[1] Agrachev, Andrei; Barilari, Davide; Boscain, Ugo On the Hausdorff volume in sub-Riemannian geometry, Calc. Var. Partial Differ. Equ., Volume 43 (2012) no. 3-4, pp. 355-388 | DOI | MR | Zbl

[2] Agrachev, Andrei; Barilari, Davide; Boscain, Ugo A Comprehensive Introduction to Sub-Riemannian Geometry, Monograph, Cambridge University Press, 2019 | Zbl

[3] Agrachev, Andrei; Barilari, Davide; Rizzi, Luca Sub-Riemannian curvature in contact geometry, J. Geom. Anal., Volume 27 (2017) no. 1, pp. 366-408 | DOI | MR | Zbl

[4] Agrachev, Andrei; Barilari, Davide; Rizzi, Luca Curvature: a variational approach, Mem. Am. Math. Soc., Volume 1225 (2018) no. iii-vi, p. 146 | MR | Zbl

[5] Agrachev, Andrei; Sachkov, Yuri L. Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer, 2004, xiv+412 pages | MR | Zbl

[6] Barilari, Davide Trace heat kernel asymptotics in 3D contact sub-Riemannian geometry, J. Math. Sci., New York, Volume 195 (2013) no. 3, pp. 391-411 | DOI | MR | Zbl

[7] Barilari, Davide; Boarotto, Francesco Kolmogorov-Fokker-Planck operators in dimension two: heat kernel and curvature, J. Evol. Equ., Volume 18 (2018) no. 3, pp. 1115-1146 | DOI | MR | Zbl

[8] Barilari, Davide; Paoli, Elisa Curvature terms in small time heat kernel expansion for a model class of hypoelliptic Hörmander operators, Nonlinear Anal., Theory Methods Appl., Volume 164 (2017), pp. 118-134 | DOI | MR | Zbl

[9] Barilari, Davide; Rizzi, Luca A formula for Popp’s volume in sub-Riemannian geometry, Anal. Geom. Metr. Spaces, Volume 1 (2013), pp. 42-57 | DOI | MR | Zbl

[10] Barilari, Davide; Rizzi, Luca Comparison theorems for conjugate points in sub-Riemannian geometry, ESAIM, Control Optim. Calc. Var., Volume 22 (2016) no. 2, pp. 439-472 | DOI | MR | Zbl

[11] Barilari, Davide; Rizzi, Luca On Jacobi fields and a canonical connection in sub-Riemannian geometry, Arch. Math., Brno, Volume 53 (2017) no. 2, pp. 77-92 | DOI | MR | Zbl

[12] Bismut, Jean-Michel Large deviations and the Malliavin calculus, Progress in Mathematics, 45, Birkhäuser, 1984, viii+216 pages | MR | Zbl

[13] Gallot, Sylvestre; Hulin, Dominique; Lafontaine, Jacques Riemannian geometry, Universitext, Springer, 2004, xvi+322 pages | DOI | MR | Zbl

[14] Jakubczyk, Bronisław Introduction to geometric nonlinear control; controllability and Lie bracket, Mathematical control theory (Trieste, 2001) (ICTP Lecture Notes), Volume 8, The Abdus Salam International Centre for Theoretical Physics, 2002, pp. 107-168 | MR | Zbl

[15] Jurdjevic, Velimir Geometric control theory, Cambridge Studies in Advanced Mathematics, 52, Cambridge University Press, 1997, xviii+492 pages | MR | Zbl

[16] Montgomery, Richard Abnormal Minimizers, SIAM J. Control Optimization, Volume 32 (1994) no. 6, pp. 1605-1620 | DOI | MR | Zbl

[17] Montgomery, Richard A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, 91, American Mathematical Society, 2002, xx+259 pages | MR | Zbl

[18] Paoli, Elisa Small time asymptotics on the diagonal for Hörmander’s type hypoelliptic operators, J. Dyn. Control Syst., Volume 23 (2017) no. 1, pp. 111-143 | DOI | MR | Zbl

[19] Pontryagin, Lev S.; Boltyanskiĭ, Vladimir G.; Gamkrelidze, Revaz V.; Mishchenko, Evgeniĭ F. Selected works. Vol. 4, Classics of Soviet Mathematics, Gordon and Breach Science Publishers, 1986, xxiv+360 pages | Zbl

[20] Schechter, Samuel On the Inversion of Certain Matrices, Math. Tables Aids Comput., Volume 13 (1959) no. 66, pp. 73-77 | DOI | MR | Zbl

[21] Villani, Cédric Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer, 2009, xxii+973 pages | DOI | MR | Zbl

[22] Zelenko, Igor; Li, Chengbo Differential geometry of curves in Lagrange Grassmannians with given Young diagram, Differ. Geom. Appl., Volume 27 (2009) no. 6, pp. 723-742 http://www.sciencedirect.com/science/article/pii/s0926224509000710 | DOI | MR | Zbl

Cité par Sources :