On considère la variation d’un volume lisse le long des extrema d’un problème variationnel avec contraintes non holonômes et lagrangien de type action. On introduit un nouvel invariant, appelé derivée canonique du volume, qui décrit l’interaction entre la forme volume et la dynamique. On montre comment cet invariant, avec des invariants de type courbure associés à la dynamique, apparaissent dans le développement asymptotique du volume. Cela généralise le développement classique du volume riemannien le long du flot géodésique en termes de la courbure de Ricci à une vaste classe de flots hamiltoniens, notamment tous les flots géodésiques sous-riemanniens.
We study the variation of a smooth volume form along extremals of a variational problem with nonholonomic constraints and an action-like Lagrangian. We introduce a new invariant, called volume geodesic derivative, describing the interaction of the volume with the dynamics and we study its basic properties. We then show how this invariant, together with curvature-like invariants of the dynamics, appear in the asymptotic expansion of the volume. This generalizes the well-known expansion of the Riemannian volume in terms of Ricci curvature to a wide class of Hamiltonian flows, including all sub-Riemannian geodesic flows.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3268
Keywords: volume, geodesics, Ricci curvature, Hamiltonian systems, sub-Riemannian geometry
Mot clés : volume, géodésiques, courbure de Ricci, systèmes Hamiltoniens, géométrie sous-riemannienne
Agrachev, Andrei A. 1, 2 ; Barilari, Davide 3 ; Paoli, Elisa 1
@article{AIF_2019__69_3_1187_0, author = {Agrachev, Andrei A. and Barilari, Davide and Paoli, Elisa}, title = {Volume geodesic distortion and {Ricci} curvature for {Hamiltonian} dynamics}, journal = {Annales de l'Institut Fourier}, pages = {1187--1228}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {3}, year = {2019}, doi = {10.5802/aif.3268}, zbl = {07067429}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3268/} }
TY - JOUR AU - Agrachev, Andrei A. AU - Barilari, Davide AU - Paoli, Elisa TI - Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics JO - Annales de l'Institut Fourier PY - 2019 SP - 1187 EP - 1228 VL - 69 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3268/ DO - 10.5802/aif.3268 LA - en ID - AIF_2019__69_3_1187_0 ER -
%0 Journal Article %A Agrachev, Andrei A. %A Barilari, Davide %A Paoli, Elisa %T Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics %J Annales de l'Institut Fourier %D 2019 %P 1187-1228 %V 69 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3268/ %R 10.5802/aif.3268 %G en %F AIF_2019__69_3_1187_0
Agrachev, Andrei A.; Barilari, Davide; Paoli, Elisa. Volume geodesic distortion and Ricci curvature for Hamiltonian dynamics. Annales de l'Institut Fourier, Tome 69 (2019) no. 3, pp. 1187-1228. doi : 10.5802/aif.3268. https://aif.centre-mersenne.org/articles/10.5802/aif.3268/
[1] On the Hausdorff volume in sub-Riemannian geometry, Calc. Var. Partial Differ. Equ., Volume 43 (2012) no. 3-4, pp. 355-388 | DOI | MR | Zbl
[2] A Comprehensive Introduction to Sub-Riemannian Geometry, Monograph, Cambridge University Press, 2019 | Zbl
[3] Sub-Riemannian curvature in contact geometry, J. Geom. Anal., Volume 27 (2017) no. 1, pp. 366-408 | DOI | MR | Zbl
[4] Curvature: a variational approach, Mem. Am. Math. Soc., Volume 1225 (2018) no. iii-vi, p. 146 | MR | Zbl
[5] Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer, 2004, xiv+412 pages | MR | Zbl
[6] Trace heat kernel asymptotics in 3D contact sub-Riemannian geometry, J. Math. Sci., New York, Volume 195 (2013) no. 3, pp. 391-411 | DOI | MR | Zbl
[7] Kolmogorov-Fokker-Planck operators in dimension two: heat kernel and curvature, J. Evol. Equ., Volume 18 (2018) no. 3, pp. 1115-1146 | DOI | MR | Zbl
[8] Curvature terms in small time heat kernel expansion for a model class of hypoelliptic Hörmander operators, Nonlinear Anal., Theory Methods Appl., Volume 164 (2017), pp. 118-134 | DOI | MR | Zbl
[9] A formula for Popp’s volume in sub-Riemannian geometry, Anal. Geom. Metr. Spaces, Volume 1 (2013), pp. 42-57 | DOI | MR | Zbl
[10] Comparison theorems for conjugate points in sub-Riemannian geometry, ESAIM, Control Optim. Calc. Var., Volume 22 (2016) no. 2, pp. 439-472 | DOI | MR | Zbl
[11] On Jacobi fields and a canonical connection in sub-Riemannian geometry, Arch. Math., Brno, Volume 53 (2017) no. 2, pp. 77-92 | DOI | MR | Zbl
[12] Large deviations and the Malliavin calculus, Progress in Mathematics, 45, Birkhäuser, 1984, viii+216 pages | MR | Zbl
[13] Riemannian geometry, Universitext, Springer, 2004, xvi+322 pages | DOI | MR | Zbl
[14] Introduction to geometric nonlinear control; controllability and Lie bracket, Mathematical control theory (Trieste, 2001) (ICTP Lecture Notes), Volume 8, The Abdus Salam International Centre for Theoretical Physics, 2002, pp. 107-168 | MR | Zbl
[15] Geometric control theory, Cambridge Studies in Advanced Mathematics, 52, Cambridge University Press, 1997, xviii+492 pages | MR | Zbl
[16] Abnormal Minimizers, SIAM J. Control Optimization, Volume 32 (1994) no. 6, pp. 1605-1620 | DOI | MR | Zbl
[17] A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, 91, American Mathematical Society, 2002, xx+259 pages | MR | Zbl
[18] Small time asymptotics on the diagonal for Hörmander’s type hypoelliptic operators, J. Dyn. Control Syst., Volume 23 (2017) no. 1, pp. 111-143 | DOI | MR | Zbl
[19] Selected works. Vol. 4, Classics of Soviet Mathematics, Gordon and Breach Science Publishers, 1986, xxiv+360 pages | Zbl
[20] On the Inversion of Certain Matrices, Math. Tables Aids Comput., Volume 13 (1959) no. 66, pp. 73-77 | DOI | MR | Zbl
[21] Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer, 2009, xxii+973 pages | DOI | MR | Zbl
[22] Differential geometry of curves in Lagrange Grassmannians with given Young diagram, Differ. Geom. Appl., Volume 27 (2009) no. 6, pp. 723-742 http://www.sciencedirect.com/science/article/pii/s0926224509000710 | DOI | MR | Zbl
Cité par Sources :