A Hamiltonian version of a result of Gromoll and Grove
[Une version hamiltonienne d’un résultat de Gromoll et Grove]
Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 409-419.

On généralise aux structures hamiltoniennes réelles sur P 3 le théorème qui dit que, dans une 2-sphère riemannienne dont les géodésiques sont toutes fermées, toute géodésique est simplement fermée. Cela implique que, dans une 2-sphère finslerienne réversible dont les géodésiques sont toutes fermées, elles ont toutes la même longueur.

The theorem that if all geodesics of a Riemannian two-sphere are closed they are also simple closed is generalized to real Hamiltonian structures on P 3 . For reversible Finsler 2-spheres all of whose geodesics are closed this implies that the lengths of all geodesics coincide.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3247
Classification : 53D35, 53D25
Keywords: Zoll contact forms, Hamiltonian structures, rigidity
Mot clés : Structures de contact de Zoll, structure hamiltonienne, rigidité

Frauenfelder, Urs 1 ; Lange, Christian 2 ; Suhr, Stefan 3

1 Institut für Mathematik Universität Augsburg Universitätsstrasse 14 86159 Augsburg (Germany)
2 Mathematisches Institut Universität zu Köln Weyertal 86-90 50931 Cologne (Germany)
3 DMA, ENS Paris and Université Paris Dauphine 45 rue d’Ulm 75005 Paris (France)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_1_409_0,
     author = {Frauenfelder, Urs and Lange, Christian and Suhr, Stefan},
     title = {A {Hamiltonian} version of a result of {Gromoll} and {Grove}},
     journal = {Annales de l'Institut Fourier},
     pages = {409--419},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {1},
     year = {2019},
     doi = {10.5802/aif.3247},
     zbl = {07067408},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3247/}
}
TY  - JOUR
AU  - Frauenfelder, Urs
AU  - Lange, Christian
AU  - Suhr, Stefan
TI  - A Hamiltonian version of a result of Gromoll and Grove
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 409
EP  - 419
VL  - 69
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3247/
DO  - 10.5802/aif.3247
LA  - en
ID  - AIF_2019__69_1_409_0
ER  - 
%0 Journal Article
%A Frauenfelder, Urs
%A Lange, Christian
%A Suhr, Stefan
%T A Hamiltonian version of a result of Gromoll and Grove
%J Annales de l'Institut Fourier
%D 2019
%P 409-419
%V 69
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3247/
%R 10.5802/aif.3247
%G en
%F AIF_2019__69_1_409_0
Frauenfelder, Urs; Lange, Christian; Suhr, Stefan. A Hamiltonian version of a result of Gromoll and Grove. Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 409-419. doi : 10.5802/aif.3247. https://aif.centre-mersenne.org/articles/10.5802/aif.3247/

[1] Besse, Arthur L. Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, 93, Springer, 1978, ix+262 pages (With appendices by D. B. A. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J. L. Kazdan) | MR | Zbl

[2] Cieliebak, Kai; Frauenfelder, Urs; Paternain, Gabriel P. Symplectic topology of Mañé’s critical values, Geom. Topol., Volume 14 (2010) no. 3, pp. 1765-1870 | DOI | MR | Zbl

[3] Cieliebak, Kai; Volkov, Evgeny First steps in stable Hamiltonian topology, J. Eur. Math. Soc., Volume 17 (2015) no. 2, pp. 321-404 | DOI | MR | Zbl

[4] Epstein, David B. A. Periodic flows on three-manifolds, Ann. Math., Volume 95 (1972), pp. 66-82 | DOI | MR | Zbl

[5] Frauenfelder, Urs; Labrousse, Clémence; Schlenk, Felix Slow volume growth for Reeb flows on spherizations and contact Bott-Samelson theorems, J. Topol. Anal., Volume 7 (2015) no. 3, pp. 407-451 | DOI | MR | Zbl

[6] Geiges, Hansjörg; Lange, Christian Seifert fibrations of lens spaces, Abh. Math. Semin. Univ. Hamb., Volume 88 (2018) no. 1, pp. 1-22 | DOI | MR | Zbl

[7] Gromoll, Detlef; Grove, Karsten On metrics on S 2 all of whose geodesics are closed, Invent. Math., Volume 65 (1981) no. 1, pp. 175-177 | DOI | MR | Zbl

[8] Harris, Adam; Paternain, Gabriel P. Dynamically convex Finsler metrics and J-holomorphic embedding of asymptotic cylinders, Ann. Global Anal. Geom., Volume 34 (2008) no. 2, pp. 115-134 | DOI | MR | Zbl

[9] Lange, Christian On metrics on 2-orbifolds all of whose geodesics are closed, J. Reine Angew. Math. (2018) (published online) | DOI | Zbl

[10] Poincaré, Henri Sur les lignes géodésiques des surfaces convexes, Trans. Am. Math. Soc., Volume 6 (1905) no. 3, pp. 237-274 | DOI | MR | Zbl

[11] Scott, Peter The geometries of 3-manifolds, Bull. Lond. Math. Soc., Volume 15 (1983) no. 5, pp. 401-487 | DOI | MR | Zbl

[12] Seifert, Herbert Topologie Dreidimensionaler Gefaserter Räume, Acta Math., Volume 60 (1933) no. 1, pp. 147-238 | DOI | MR | Zbl

Cité par Sources :