On généralise aux structures hamiltoniennes réelles sur le théorème qui dit que, dans une -sphère riemannienne dont les géodésiques sont toutes fermées, toute géodésique est simplement fermée. Cela implique que, dans une -sphère finslerienne réversible dont les géodésiques sont toutes fermées, elles ont toutes la même longueur.
The theorem that if all geodesics of a Riemannian two-sphere are closed they are also simple closed is generalized to real Hamiltonian structures on . For reversible Finsler -spheres all of whose geodesics are closed this implies that the lengths of all geodesics coincide.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3247
Keywords: Zoll contact forms, Hamiltonian structures, rigidity
Mot clés : Structures de contact de Zoll, structure hamiltonienne, rigidité
Frauenfelder, Urs 1 ; Lange, Christian 2 ; Suhr, Stefan 3
@article{AIF_2019__69_1_409_0, author = {Frauenfelder, Urs and Lange, Christian and Suhr, Stefan}, title = {A {Hamiltonian} version of a result of {Gromoll} and {Grove}}, journal = {Annales de l'Institut Fourier}, pages = {409--419}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {1}, year = {2019}, doi = {10.5802/aif.3247}, zbl = {07067408}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3247/} }
TY - JOUR AU - Frauenfelder, Urs AU - Lange, Christian AU - Suhr, Stefan TI - A Hamiltonian version of a result of Gromoll and Grove JO - Annales de l'Institut Fourier PY - 2019 SP - 409 EP - 419 VL - 69 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3247/ DO - 10.5802/aif.3247 LA - en ID - AIF_2019__69_1_409_0 ER -
%0 Journal Article %A Frauenfelder, Urs %A Lange, Christian %A Suhr, Stefan %T A Hamiltonian version of a result of Gromoll and Grove %J Annales de l'Institut Fourier %D 2019 %P 409-419 %V 69 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3247/ %R 10.5802/aif.3247 %G en %F AIF_2019__69_1_409_0
Frauenfelder, Urs; Lange, Christian; Suhr, Stefan. A Hamiltonian version of a result of Gromoll and Grove. Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 409-419. doi : 10.5802/aif.3247. https://aif.centre-mersenne.org/articles/10.5802/aif.3247/
[1] Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, 93, Springer, 1978, ix+262 pages (With appendices by D. B. A. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J. L. Kazdan) | MR | Zbl
[2] Symplectic topology of Mañé’s critical values, Geom. Topol., Volume 14 (2010) no. 3, pp. 1765-1870 | DOI | MR | Zbl
[3] First steps in stable Hamiltonian topology, J. Eur. Math. Soc., Volume 17 (2015) no. 2, pp. 321-404 | DOI | MR | Zbl
[4] Periodic flows on three-manifolds, Ann. Math., Volume 95 (1972), pp. 66-82 | DOI | MR | Zbl
[5] Slow volume growth for Reeb flows on spherizations and contact Bott-Samelson theorems, J. Topol. Anal., Volume 7 (2015) no. 3, pp. 407-451 | DOI | MR | Zbl
[6] Seifert fibrations of lens spaces, Abh. Math. Semin. Univ. Hamb., Volume 88 (2018) no. 1, pp. 1-22 | DOI | MR | Zbl
[7] On metrics on all of whose geodesics are closed, Invent. Math., Volume 65 (1981) no. 1, pp. 175-177 | DOI | MR | Zbl
[8] Dynamically convex Finsler metrics and -holomorphic embedding of asymptotic cylinders, Ann. Global Anal. Geom., Volume 34 (2008) no. 2, pp. 115-134 | DOI | MR | Zbl
[9] On metrics on -orbifolds all of whose geodesics are closed, J. Reine Angew. Math. (2018) (published online) | DOI | Zbl
[10] Sur les lignes géodésiques des surfaces convexes, Trans. Am. Math. Soc., Volume 6 (1905) no. 3, pp. 237-274 | DOI | MR | Zbl
[11] The geometries of -manifolds, Bull. Lond. Math. Soc., Volume 15 (1983) no. 5, pp. 401-487 | DOI | MR | Zbl
[12] Topologie Dreidimensionaler Gefaserter Räume, Acta Math., Volume 60 (1933) no. 1, pp. 147-238 | DOI | MR | Zbl
Cité par Sources :