Branched covers of elliptic curves and Kähler groups with exotic finiteness properties
[Revêtements ramifiés de courbes elliptiques et groupes kähleriens avec propriétés de finitude exotiques]
Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 335-363.

Nous construisons des groupes kähleriens ayant des propriétés de finitude arbitraires en considérant des applications holomorphes de produits de surfaces de Riemann vers une courbe elliptique : pour tout r3, nous obtenons une grande classe de groupes kähleriens qui ont un espace classifiant avec un (r-1)-squelette fini, mais n’ont aucun espace classifiant avec un nombre fini de r-cellules. Nous décrivons des invariants qui distinguent beaucoup de ces groupes. Notre construction est inspirée par les exemples de Dimca, Papadima et Suciu.

We construct Kähler groups with arbitrary finiteness properties by mapping products of closed Riemann surfaces holomorphically onto an elliptic curve: for each r3, we obtain large classes of Kähler groups that have classifying spaces with finite (r-1)-skeleton but do not have classifying spaces with finitely many r-cells. We describe invariants which distinguish many of these groups. Our construction is inspired by examples of Dimca, Papadima and Suciu.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3245
Classification : 32J27, 20J05, 20F65
Keywords: Kähler groups, Homological finiteness properties, Branched covers
Mot clés : Groupes kähleriens, propriétés de finitude homologiques, Revêtements ramifiés

Llosa Isenrich, Claudio 1

1 Laboratoire de Mathématiques d’Orsay Univ. Paris-Sud, CNRS, Université Paris-Saclay 91405 Orsay (France)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_1_335_0,
     author = {Llosa Isenrich, Claudio},
     title = {Branched covers of elliptic curves and {K\"ahler} groups with exotic finiteness properties},
     journal = {Annales de l'Institut Fourier},
     pages = {335--363},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {1},
     year = {2019},
     doi = {10.5802/aif.3245},
     zbl = {07067406},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3245/}
}
TY  - JOUR
AU  - Llosa Isenrich, Claudio
TI  - Branched covers of elliptic curves and Kähler groups with exotic finiteness properties
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 335
EP  - 363
VL  - 69
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3245/
DO  - 10.5802/aif.3245
LA  - en
ID  - AIF_2019__69_1_335_0
ER  - 
%0 Journal Article
%A Llosa Isenrich, Claudio
%T Branched covers of elliptic curves and Kähler groups with exotic finiteness properties
%J Annales de l'Institut Fourier
%D 2019
%P 335-363
%V 69
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3245/
%R 10.5802/aif.3245
%G en
%F AIF_2019__69_1_335_0
Llosa Isenrich, Claudio. Branched covers of elliptic curves and Kähler groups with exotic finiteness properties. Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 335-363. doi : 10.5802/aif.3245. https://aif.centre-mersenne.org/articles/10.5802/aif.3245/

[1] Bestvina, Mladen; Brady, Noel Morse theory and finiteness properties of groups, Invent. Math., Volume 129 (1997) no. 3, pp. 445-470 | DOI | MR | Zbl

[2] Biswas, Indranil; Mj, Mahan; Pancholi, Dishant Homotopical Height, Int. J. Math., Volume 25 (2014) no. 13, 1450123, 43 pages (Art. ID 1450123, 43 p.) | MR | Zbl

[3] Bridson, Martin R.; Howie, James Normalisers in limit groups, Math. Ann., Volume 337 (2007) no. 2, pp. 385-394 | MR | Zbl

[4] Bridson, Martin R.; Howie, James; Miller, Charles F. III; Short, Hamish The subgroups of direct products of surface groups, Geom. Dedicata, Volume 92 (2002), pp. 95-103 | DOI | MR | Zbl

[5] Bridson, Martin R.; Howie, James; Miller, Charles F. III; Short, Hamish On the finite presentation of subdirect products and the nature of residually free groups, Am. J. Math., Volume 135 (2013) no. 4, pp. 891-933 | DOI | MR | Zbl

[6] Brown, Kenneth S. Cohomology of groups, Graduate Texts in Mathematics, 87, Springer, 1982, x+306 pages | MR | Zbl

[7] Dimca, Alexandru; Papadima, Stefan; Suciu, Alexander I. Quasi-Kähler Bestvina–Brady groups, J. Algebr. Geom., Volume 17 (2008) no. 1, pp. 185-197 | Zbl

[8] Dimca, Alexandru; Papadima, Stefan; Suciu, Alexander I. Non-finiteness properties of fundamental groups of smooth projective varieties, J. Reine Angew. Math., Volume 629 (2009), pp. 89-105 | MR | Zbl

[9] Farb, Benson; Margalit, Dan A primer on Mapping Class groups, Princeton Mathematics Series, 49, Princeton University Press, 2012 | MR | Zbl

[10] Jaco, William On certain subgroups of the fundamental group of a closed surface, Proc. Camb. Philos. Soc., Volume 67 (1970), pp. 17-18 | DOI | MR | Zbl

[11] Llosa Isenrich, Claudio Finite presentations for Kähler groups with arbitrary finiteness properties, J. Algebra, Volume 476 (2017), pp. 344-367 | DOI | MR | Zbl

[12] Suciu, Alexander I. Characteristic varieties and Betti numbers of free abelian covers, Int. Math. Res. Not., Volume 2014 (2014) no. 4, pp. 1063-1124 | DOI | MR | Zbl

Cité par Sources :