Nous donnons des applications de l’étude du comportement des groupes de Selmer sous la spécialisation. Nous considérons les groupes de Selmer associés à de représentations galoisiennes de dimension provenant
- (i) du produit tensoriel de deux familles cuspidales de Hida et ,
- (ii) de la déformation cyclotomique du dernier,
- (iii) du produit tensoriel d’une forme cuspidale par une famille de Hida , où est une spécialisation classique de de poids .
Nous démontrons des théorèmes de contrôle qui relient
- (a) le groupe de Selmer associé au produit tensoriel des familles de Hida et au groupe de Selmer associé à sa déformation cyclotomique,
- (b) le groupe de Selmer associé au produit tensoriel de par au groupe de Selmer associé au produit tensoriel de et .
Du côté analytique des conjectures principales, Hida a construit des fonctions -adiques de Rankin–Selberg à une variable, à deux variables et à trois variables. Nos résultats sur la spécialisation nous permettent de vérifier les résultats de Hida qui relient
- (a) la fonction -adique à deux variables à la fonction -adique à trois variables, et
- (b) la fonction -adique à une variables à la fonction -adique à deux variables,
et nos théorèmes de contrôle pour les groupes de Selmer sont complètement compatibles avec les conjectures principales.
We provide applications to studying the behavior of Selmer groups under specialization. We consider Selmer groups associated to -dimensional Galois representations coming from
- (i) the tensor product of two cuspidal Hida families and ,
- (ii) its cyclotomic deformation,
- (iii) the tensor product of a cusp form and the Hida family , where is a classical specialization of with weight .
We prove control theorems to relate
- (a) the Selmer group associated to the tensor product of Hida families and to the Selmer group associated to its cyclotomic deformation, and
- (b) the Selmer group associated to the tensor product of and to the Selmer group associated to the tensor product of and .
On the analytic side of the main conjectures, Hida has constructed one variable, two variable and three variable Rankin–Selberg -adic -functions. Our specialization results enable us to verify that Hida’s results relating
- (a) the two variable -adic -function to the three variable -adic -function, and
- (b) the one variable -adic -function to the two variable -adic -function,
and our control theorems for Selmer groups are completely consistent with the main conjectures.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3244
Keywords: Iwasawa theory, Hida theory, Selmer groups
Mot clés : théorie d’Iwasawa, théorie de Hida, groupes de Selmer
Palvannan, Bharathwaj 1
@article{AIF_2019__69_1_303_0, author = {Palvannan, Bharathwaj}, title = {Height one specializations of {Selmer} groups}, journal = {Annales de l'Institut Fourier}, pages = {303--334}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {1}, year = {2019}, doi = {10.5802/aif.3244}, zbl = {07067405}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3244/} }
TY - JOUR AU - Palvannan, Bharathwaj TI - Height one specializations of Selmer groups JO - Annales de l'Institut Fourier PY - 2019 SP - 303 EP - 334 VL - 69 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3244/ DO - 10.5802/aif.3244 LA - en ID - AIF_2019__69_1_303_0 ER -
%0 Journal Article %A Palvannan, Bharathwaj %T Height one specializations of Selmer groups %J Annales de l'Institut Fourier %D 2019 %P 303-334 %V 69 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3244/ %R 10.5802/aif.3244 %G en %F AIF_2019__69_1_303_0
Palvannan, Bharathwaj. Height one specializations of Selmer groups. Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 303-334. doi : 10.5802/aif.3244. https://aif.centre-mersenne.org/articles/10.5802/aif.3244/
[1] On the density of modular points in universal deformation spaces, Am. J. Math., Volume 123 (2001) no. 5, pp. 985-1007 | DOI | MR | Zbl
[2] Deformation rings for induced Galois representations, University of California, Los Angeles (USA) (1999) (Ph. D. Thesis) | MR
[3] Deformations of induced Galois representations, J. Reine Angew. Math., Volume 556 (2003), pp. 79-98 | DOI | MR | Zbl
[4] Variation of Iwasawa invariants in Hida families, Invent. Math., Volume 163 (2006) no. 3, pp. 523-580 | DOI | MR | Zbl
[5] Deforming Galois representations: controlling the conductor, J. Number Theory, Volume 34 (1990) no. 1, pp. 95-113 | DOI | MR | Zbl
[6] Iwasawa’s theory and -adic -functions for imaginary quadratic fields, Number theory related to Fermat’s last theorem (Progress in Math.), Volume 26, Birkhäuser, 1982, pp. 275-285 | DOI | Zbl
[7] Iwasawa theory and -adic deformations of motives, Motives (Seattle, WA, 1991) (Proceedings of Symposia in Pure Mathematics), Volume 55 (1994), pp. 193-223 | MR | Zbl
[8] On the structure of certain Galois cohomology groups, Doc. Math. (2006), pp. 335-391 | MR | Zbl
[9] Surjectivity of the global-to-local map defining a Selmer group, Kyoto J. Math., Volume 50 (2010) no. 4, pp. 853-888 | DOI | MR | Zbl
[10] On the structure of Selmer groups, Elliptic curves, modular forms and Iwasawa theory (Springer Proc. Math. Stat.), Volume 188, Springer, 2016, pp. 225-252 | DOI | MR | Zbl
[11] On the Iwasawa invariants of elliptic curves, Invent. Math., Volume 142 (2000) no. 1, pp. 17-63 | DOI | MR | Zbl
[12] The cyclotomic Iwasawa main conjecture for Hilbert cuspforms with complex multiplication, Kyoto J. Math., Volume 58 (2018) no. 1, pp. 1-100 | DOI | MR | Zbl
[13] A -adic measure attached to the zeta functions associated with two elliptic modular forms. I, Invent. Math., Volume 79 (1985) no. 1, pp. 159-195 | DOI | MR | Zbl
[14] Galois representations into attached to ordinary cusp forms, Invent. Math., Volume 85 (1986) no. 3, pp. 545-613 | DOI | MR | Zbl
[15] Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 2, pp. 231-273 | DOI | MR | Zbl
[16] A -adic measure attached to the zeta functions associated with two elliptic modular forms. II, Ann. Inst. Fourier, Volume 38 (1988) no. 3, pp. 1-83 | DOI | MR | Zbl
[17] Elementary theory of -functions and Eisenstein series, London Mathematical Society Student Texts, 26, Cambridge University Press, 1993, xii+386 pages | DOI | MR | Zbl
[18] On the search of genuine -adic modular -functions for , Mém. Soc. Math. Fr., Nouv. Sér. (1996) no. 67, pp. 1-110 With a correction to: “On -adic -functions of over totally real fields”, Ann. Inst. Fourier 41 (1991), no. 2, p. 311–391 | MR | Zbl
[19] Global quadratic units and Hecke algebras, Doc. Math., Volume 3 (1998), pp. 273-284 | MR | Zbl
[20] Modular forms and Galois cohomology, Cambridge Studies in Advanced Mathematics, 69, Cambridge University Press, 2000, x+343 pages | DOI | MR | Zbl
[21] On the anticyclotomic main conjecture for CM fields, Invent. Math., Volume 117 (1994) no. 1, pp. 89-147 | DOI | MR | Zbl
[22] Eisenstein congruence on unitary groups and Iwasawa main conjectures for CM fields, J. Am. Math. Soc., Volume 27 (2014) no. 3, pp. 753-862 | DOI | MR | Zbl
[23] Rankin-Eisenstein classes and explicit reciprocity laws, Camb. J. Math., Volume 5 (2017) no. 1, pp. 1-122 | DOI | MR | Zbl
[24] Euler systems for Rankin-Selberg convolutions of modular forms, Ann. Math., Volume 180 (2014) no. 2, pp. 653-771 | DOI | MR | Zbl
[25] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002, xvi+576 pages (Translated from the French by Reinie Erné) | MR | Zbl
[26] Rankin-Selberg -functions in cyclotomic towers, I (2012) (https://arxiv.org/abs/1207.1672) | Zbl
[27] Rankin-Selberg -functions in cyclotomic towers, II (2012) (https://arxiv.org/abs/1207.1673) | Zbl
[28] On Selmer groups and factoring -adic -functions, Int. Math. Res. Not. (2017) (published online, to appear in print.) | DOI | Zbl
[29] SageMath, the Sage Mathematics Software System (Version 7.2) (http://www.sagemath.org)
Cité par Sources :