Soient une variété Kählerienne compacte et une forme fermée qui représente une classe de cohomologie grosse. On introduit une métrique sur l’espace d’énergie finie , ce qui en fait un espace métrique géodésique complet. Cette construction s’appuie seulement sur la théorie du pluripotentiel et ne se réfère pas à la géométrie finsleriénne , et donc a priori elle est plus rigide par rapport à la construction analogue dans le cas Kählerien. Enfin, on adapte des résultats de Ross et Witt Nyström au cas d’une classe grosse pour montrer que l’on peut construire des rayons géodésiques dans cet espace de façon très flexible.
Suppose is a compact Kähler manifold of dimension , and is closed -form representing a big cohomology class. We introduce a metric on the finite energy space , making it a complete geodesic metric space. This construction is potentially more rigid compared to its analog from the Kähler case, as it only relies on pluripotential theory, with no reference to infinite dimensional Finsler geometry. Lastly, by adapting the results of Ross and Witt Nyström to the big case, we show that one can construct geodesic rays in this space in a flexible manner.
Mot clés : Variétés Kähleriénnes, théorie du pluripotentiel, classes d’énergie de Monge-Ampère, rayons géodésiques
Darvas, Tamás 1 ; Di Nezza, Eleonora 2 ; Lu, Chinh H. 3
@article{AIF_2018__68_7_3053_0, author = {Darvas, Tam\'as and Di Nezza, Eleonora and Lu, Chinh H.}, title = {$L^1$ metric geometry of big cohomology classes}, journal = {Annales de l'Institut Fourier}, pages = {3053--3086}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {7}, year = {2018}, doi = {10.5802/aif.3236}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3236/} }
TY - JOUR AU - Darvas, Tamás AU - Di Nezza, Eleonora AU - Lu, Chinh H. TI - $L^1$ metric geometry of big cohomology classes JO - Annales de l'Institut Fourier PY - 2018 SP - 3053 EP - 3086 VL - 68 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3236/ DO - 10.5802/aif.3236 LA - en ID - AIF_2018__68_7_3053_0 ER -
%0 Journal Article %A Darvas, Tamás %A Di Nezza, Eleonora %A Lu, Chinh H. %T $L^1$ metric geometry of big cohomology classes %J Annales de l'Institut Fourier %D 2018 %P 3053-3086 %V 68 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3236/ %R 10.5802/aif.3236 %G en %F AIF_2018__68_7_3053_0
Darvas, Tamás; Di Nezza, Eleonora; Lu, Chinh H. $L^1$ metric geometry of big cohomology classes. Annales de l'Institut Fourier, Tome 68 (2018) no. 7, pp. 3053-3086. doi : 10.5802/aif.3236. https://aif.centre-mersenne.org/articles/10.5802/aif.3236/
[1] Infinite geodesic rays in the space of Kähler potentials, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 2 (2003) no. 4, pp. 617-630 | Zbl
[2] The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44 | Zbl
[3] Fine topology, Šilov boundary, and , J. Funct. Anal., Volume 72 (1987) no. 2, pp. 225-251 | DOI | Zbl
[4] From Monge–Ampère equations to envelopes and geodesic rays in the zero temperature limit (2013) (https://arxiv.org/abs/1307.3008)
[5] Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., Volume 181 (2010) no. 2, pp. 337-394 | Zbl
[6] Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties (2011) (https://arxiv.org/abs/1111.7158, to appear in J. Reine Angew. Math.)
[7] A variational approach to complex Monge–Ampère equations, Publ. Math., Inst. Hautes Étud. Sci., Volume 117 (2013), pp. 179-245 | Zbl
[8] A variational approach to the Yau–Tian–Donaldson conjecture (2015) (https://arxiv.org/abs/1509.04561)
[9] Regularity of weak minimizers of the K-energy and applications to properness and K-stability (2016) (https://arxiv.org/abs/1602.03114, to appear in Ann. Sci. Ãc. Norm. Supér.)
[10] A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math., Volume 200 (2015) no. 1, pp. 149-200 | Zbl
[11] The complex Monge–Ampère operator in pluripotential theory, 1997 (http://gamma.im.uj.edu.pl/~blocki/publ/ln/wykl.pdf)
[12] Pluripotential energy, Potential Anal., Volume 36 (2012) no. 1, pp. 155-176 | Zbl
[13] Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | Zbl
[14] Pluricomplex energy, Acta Math., Volume 180 (1998) no. 2, pp. 187-217 | Zbl
[15] The space of Kähler metrics, J. Differ. Geom., Volume 56 (2000) no. 2, pp. 189-234 | Zbl
[16] On the constant scalar curvature Kähler metrics, existence results (2018) (https://arxiv.org/abs/1801.00656)
[17] Calabi flow, geodesic rays, and uniqueness of constant scalar curvature Kähler metrics, Ann. Math., Volume 180 (2014) no. 2, pp. 407-454 | Zbl
[18] Test configuration and geodesic rays, Differential geometry, mathematical physics, mathematics and society (I) (Astérisque), Volume 321, Société Mathématique de France, 2008, pp. 139-167 | Zbl
[19] The Mabuchi geometry of finite energy classes, Adv. Math., Volume 285 (2015), pp. 182-219 | DOI | Zbl
[20] The Mabuchi completion of the space of Kähler potentials, Am. J. Math., Volume 139 (2017) no. 5, pp. 1275-1313 | Zbl
[21] Metric geometry of normal Kähler spaces, energy properness, and existence of canonical metrics, Int. Math. Res. Not., Volume 2017 (2017) no. 22, pp. 6752-6777 erratum in ibid. 2017 (2017), no. 22, p. 7050 | Zbl
[22] Weak geodesic rays in the space of Kähler potentials and the class , J. Inst. Math. Jussieu, Volume 16 (2017) no. 4, pp. 837-858 | Zbl
[23] Geometric pluripotential theory on Kähler manifolds (2019) (https://arxiv.org/abs/1902.01982)
[24] Monotonicity of non-pluripolar products and complex Monge–Ampère equations with prescribed singularity, Anal. PDE, Volume 11 (2018) no. 8, pp. 2049-2087 | Zbl
[25] On the singularity type of full mass currents in big cohomology classes, Compos. Math., Volume 154 (2018) no. 2, pp. 380-409 | Zbl
[26] Geodesic rays and Kähler–Ricci trajectories on Fano manifolds, Trans. Am. Math. Soc., Volume 369 (2017) no. 7, pp. 5069-5085 | Zbl
[27] Kiselman’s principle, the Dirichlet problem for the Monge–Ampére equation, and rooftop obstacle problems, J. Math. Soc. Japan, Volume 68 (2016) no. 2, pp. 773-796 | Zbl
[28] Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Am. Math. Soc., Volume 30 (2017) no. 2, pp. 347-387 | Zbl
[29] Complex analytic and differential geometry (2012) (https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf)
[30] Geometry and topology of the space of Kähler metrics on singular varieties, Compos. Math., Volume 154 (2018) no. 8, pp. 1593-1632 | Zbl
[31] Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California symplectic geometry seminar (Translations. Series), Volume 2, American Mathematical Society, 1999, pp. 13-33 | Zbl
[32] The metric completion of the Riemannian space of Kähler metrics (2014) (https://arxiv.org/abs/1401.7857)
[33] Plurisubharmonic envelopes and supersolutions (2017) (https://arxiv.org/abs/1703.05254)
[34] Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 607-639 | Zbl
[35] The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482 | DOI | Zbl
[36] Degenerate complex Monge–Ampère equations, EMS Tracts in Mathematics, 26, European Mathematical Society, 2017, xxiv+472 pages | Zbl
[37] Partial Legendre transformation for plurisubharmonic functions, Invent. Math., Volume 49 (1978), pp. 137-148 | Zbl
[38] Degenerate complex Hessian equations on compact Kähler manifolds, Indiana Univ. Math. J., Volume 64 (2015) no. 6, pp. 1721-1745 | Zbl
[39] Some symplectic geometry on compact Kähler manifolds I, Osaka J. Math., Volume 24 (1987), pp. 227-252 | Zbl
[40] Monotonicity of non-pluripolar Monge–Ampère masses (2017) (https://arxiv.org/abs/1703.01950)
[41] Regularity of geodesic rays and Monge–Ampère equations, Proc. Am. Math. Soc., Volume 138 (2010) no. 10, pp. 3637-3650 | Zbl
[42] Convex analysis, Princeton University Press, 1970, xviii+451 pages | Zbl
[43] Analytic test configurations and geodesic rays, J. Symplectic Geom., Volume 12 (2014) no. 1, pp. 125-169 | Zbl
[44] Complex Monge–Ampère and symplectic manifolds, Am. J. Math., Volume 114 (1992) no. 3, pp. 495-550 | Zbl
[45] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-441 | Zbl
Cité par Sources :