Nous étudions le cas où le groupe modulaire d’une surface de type infini admet une action avec orbites non bornées sur un graphe connexe dont les sommets sont des courbes fermées simples de . Nous définissons un invariant topologique pour surfaces de type infini qui détecte dans de nombreux cas s’il y a une telle action. Nous en déduissons que beaucoup de gros groupes modulaires, en tant que groupes topologiques non localement compacts, ont géométrie grossière non banale au sens de Rosendal.
We study when the mapping class group of an infinite-type surface admits an action with unbounded orbits on a connected graph whose vertices are simple closed curves on . We introduce a topological invariant for infinite-type surfaces that determines in many cases whether there is such an action. This allows us to conclude that, as non-locally compact topological groups, many big mapping class groups have nontrivial coarse geometry in the sense of Rosendal.
Révisé le :
Accepté le :
Publié le :
Keywords: mapping class groups, surface homeomorphisms, curve graphs, infinite-type surfaces
Mot clés : groupes modulaires, homéomorphismes des surfaces, graphes des courbes, surfaces de type infini
Durham, Matthew Gentry 1 ; Fanoni, Federica 2 ; Vlamis, Nicholas G. 3
@article{AIF_2018__68_6_2581_0, author = {Durham, Matthew Gentry and Fanoni, Federica and Vlamis, Nicholas G.}, title = {Graphs of curves on infinite-type surfaces with mapping class group actions}, journal = {Annales de l'Institut Fourier}, pages = {2581--2612}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {6}, year = {2018}, doi = {10.5802/aif.3217}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3217/} }
TY - JOUR AU - Durham, Matthew Gentry AU - Fanoni, Federica AU - Vlamis, Nicholas G. TI - Graphs of curves on infinite-type surfaces with mapping class group actions JO - Annales de l'Institut Fourier PY - 2018 SP - 2581 EP - 2612 VL - 68 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3217/ DO - 10.5802/aif.3217 LA - en ID - AIF_2018__68_6_2581_0 ER -
%0 Journal Article %A Durham, Matthew Gentry %A Fanoni, Federica %A Vlamis, Nicholas G. %T Graphs of curves on infinite-type surfaces with mapping class group actions %J Annales de l'Institut Fourier %D 2018 %P 2581-2612 %V 68 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3217/ %R 10.5802/aif.3217 %G en %F AIF_2018__68_6_2581_0
Durham, Matthew Gentry; Fanoni, Federica; Vlamis, Nicholas G. Graphs of curves on infinite-type surfaces with mapping class group actions. Annales de l'Institut Fourier, Tome 68 (2018) no. 6, pp. 2581-2612. doi : 10.5802/aif.3217. https://aif.centre-mersenne.org/articles/10.5802/aif.3217/
[1] Riemann surfaces, Princeton Mathematical Series, 26, Princeton University Press, 1960, xi+382 pages | MR | Zbl
[2] Arc and curve graphs for infinite-type surfaces, Proc. Am. Math. Soc., Volume 145 (2017) no. 11, pp. 4995-5006 | DOI | MR | Zbl
[3] On the geometry of graphs associated to infinite-type surfaces (2016) (To appear in Math. Z.)
[4] Hyperbolicité du graphe des rayons et quasi-morphismes sur un gros groupe modulaire, Geom. Topol., Volume 20 (2016) no. 1, pp. 491-535 | DOI | MR
[5] Geometry and rigidity of mapping class groups, Geom. Topol., Volume 16 (2012) no. 2, pp. 781-888 | DOI | MR
[6] Dimension and rank for mapping class groups, Ann. Math., Volume 167 (2008) no. 3, pp. 1055-1077 | DOI | MR
[7] Constructing group actions on quasi-trees and applications to mapping class groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 122 (2010), pp. 1-64 | Zbl
[8] Uniform hyperbolicity of the curve graphs, Pac. J. Math., Volume 269 (2014) no. 2, pp. 269-280 | DOI | MR
[9]
, 2016 (Personal communication)[10] Large-scale rigidity properties of the mapping class groups, Pac. J. Math., Volume 293 (2018) no. 1, pp. 1-73 | Zbl
[11] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999, xxii+643 pages | DOI | MR
[12] Circular groups, planar groups, and the Euler class, Proceedings of the Casson Fest (Geometry and Topology Monographs), Volume 7 (2004), pp. 431-491 | Zbl
[13] Big mapping class groups and dynamics (2009) (Geometry and the imagination, https://lamington.wordpress.com/2009/06/22/big-mapping-class-groups-and-dynamics/)
[14] Mapping class groups: the next generation (2009) (Geometry and the imagination, https://lamington.wordpress.com/2014/10/24/mapping-class-groups-the-next-generation/)
[15] Endperiodic Automorphisms of Surfaces and Foliations (2010) (https://arxiv.org/abs/1006.4525) | arXiv
[16] A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, 2012, xiv+472 pages | MR
[17] Curve graphs on surfaces of infinite type, Ann. Acad. Sci. Fenn. Math., Volume 40 (2015) no. 2, pp. 793-801 | Zbl
[18] Braided Houghton groups as mapping class groups, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), Volume 53 (2007) no. 2, pp. 229-240 | Zbl
[19] On a universal mapping class group of genus zero, Geom. Funct. Anal., Volume 14 (2004) no. 5, pp. 965-1012
[20] The braided Ptolemy-Thompson group is finitely presented, Geom. Topol., Volume 12 (2008) no. 1, pp. 475-530
[21] An infinite genus mapping class group and stable cohomology, Commun. Math. Phys., Volume 287 (2009) no. 3, pp. 784-804 | DOI | MR | Zbl
[22] On the definition of word hyperbolic groups, Math. Z., Volume 242 (2002) no. 3, pp. 529-541 | DOI | MR
[23] Stability of the homology of the mapping class groups of orientable surfaces, Ann. Math., Volume 121 (1985) no. 2, pp. 215-249 | DOI | MR
[24] The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math., Volume 84 (1986) no. 1, pp. 157-176 | DOI | MR
[25] 1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs, J. Eur. Math. Soc., Volume 17 (2015) no. 4, pp. 755-762 | DOI | MR | Zbl
[26] Classical descriptive set theory, Graduate Texts in Mathematics, 156, Springer, 1995, xviii+402 pages | DOI | MR
[27] Large scale geometry of homeomorphism groups (2016) (to appear in Ergodic Theory Dyn. Syst.)
[28] Geometric presentations for the pure braid group, J. Knot Theory Ramifications, Volume 18 (2009) no. 1, pp. 1-20 | DOI | MR
[29] Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., Volume 138 (1999) no. 1, pp. 103-149 | DOI | MR
[30] The geometry of the disk complex, J. Am. Math. Soc., Volume 26 (2013) no. 1, pp. 1-62 | DOI | MR
[31] Contribution à la topologie des ensembles dénombrables, Fundamenta Mathematicae, Volume 1 (1920) no. 1, pp. 17-27 http://eudml.org/doc/212609 | Zbl
[32] Cannon-Thurston maps for surface groups, Ann. Math., Volume 179 (2014) no. 1, pp. 1-80 | DOI | MR
[33] A note on the connectivity of certain complexes associated to surfaces, Enseign. Math., Volume 54 (2008) no. 3–4, pp. 287-301 | Zbl
[34] Uniform hyperbolicity of the graphs of nonseparating curves via bicorn curves (2017) (https://arxiv.org/abs/1707.08283)
[35] On the classification of noncompact surfaces, Trans. Am. Math. Soc., Volume 106 (1963), pp. 259-269 | MR
[36] Coarse geometry of topological groups (2016) (http://homepages.math.uic.edu/ rosendal/PapersWebsite/Coarse-Geometry-Book17.pdf)
Cité par Sources :