Nous poursuivons l’étude d’un contrôle épars d’un opérateur singulier. Plus précisément nous expliquons comment on peut conserver certaines propriétés de l’opérateur initial à travers un tel contrôle et décrivons quelques applications : bornitude de l’adjoint de la transformée de Riesz et du projecteur de Leray. De plus, nous nous intéresserons à donner un regard nouveau sur les dominations éparses à travers les oscillations et les fonctions carrées localisées. Aussi, nous dévoilerons une connexion entre les bons intervalles de la décomposition éparse et une décomposition atomique.
We pursue the study of a sparse control for a singular operator. More precisely, we describe how one can track some properties of the initial operator, through such a control and describe also some applications: boundedness of the adjoint of a Riesz transform and of the Leray projector. Moreover, we will be interested in giving a new insight on the sparse domination through the oscillations and the localized square functions. Also, we will reveal a connection between the good intervals of the sparse domination and the atomic decomposition for a function in a Hardy space.
Révisé le :
Accepté le :
Publié le :
Mot clés : Opérateurs épars, poids, espaces de Hardy et BMO
Keywords: Sparse operators, weights, Hardy and BMO spaces
Benea, Cristina 1 ; Bernicot, Frédéric 1
@article{AIF_2018__68_6_2329_0, author = {Benea, Cristina and Bernicot, Fr\'ed\'eric}, title = {Conservation de certaines propri\'et\'es \`a travers un contr\^ole \'epars d{\textquoteright}un op\'erateur et applications au projecteur de {Leray{\textendash}Hopf}}, journal = {Annales de l'Institut Fourier}, pages = {2329--2379}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {6}, year = {2018}, doi = {10.5802/aif.3211}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3211/} }
TY - JOUR AU - Benea, Cristina AU - Bernicot, Frédéric TI - Conservation de certaines propriétés à travers un contrôle épars d’un opérateur et applications au projecteur de Leray–Hopf JO - Annales de l'Institut Fourier PY - 2018 SP - 2329 EP - 2379 VL - 68 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3211/ DO - 10.5802/aif.3211 LA - fr ID - AIF_2018__68_6_2329_0 ER -
%0 Journal Article %A Benea, Cristina %A Bernicot, Frédéric %T Conservation de certaines propriétés à travers un contrôle épars d’un opérateur et applications au projecteur de Leray–Hopf %J Annales de l'Institut Fourier %D 2018 %P 2329-2379 %V 68 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3211/ %R 10.5802/aif.3211 %G fr %F AIF_2018__68_6_2329_0
Benea, Cristina; Bernicot, Frédéric. Conservation de certaines propriétés à travers un contrôle épars d’un opérateur et applications au projecteur de Leray–Hopf. Annales de l'Institut Fourier, Tome 68 (2018) no. 6, pp. 2329-2379. doi : 10.5802/aif.3211. https://aif.centre-mersenne.org/articles/10.5802/aif.3211/
[1] On necessary and sufficient conditions for -estimates of Riesz transforms associated to elliptic operators on and related estimates, Mem. Am. Math. Soc., Volume 186 (2007) no. 871, xviii+75 pages | DOI | MR | Zbl
[2] On the Calderón-Zygmund lemma for Sobolev functions (2008) (http://arxiv.org/abs/0810.5029)
[3] Carleson measures, trees, extrapolation, and theorems, Publ. Mat., Volume 46 (2002) no. 2, pp. 257-325 | DOI | MR | Zbl
[4] Hardy spaces of differential forms on Riemannian manifolds, J. Geom. Anal., Volume 18 (2008) no. 1, pp. 192-248 | DOI | MR | Zbl
[5] Hardy spaces and divergence operators on strongly Lipschitz domains of , J. Funct. Anal., Volume 201 (2003) no. 1, pp. 148-184 | DOI | MR | Zbl
[6] Stability of weighted Laplace-Beltrami operators under -perturbation of the Riemannian metric, J. Anal. Math., Volume 68 (1996), pp. 253-276 | DOI | MR | Zbl
[7] Sparse bilinear forms for Bochner Riesz multipliers and applications, Trans. Lond. Math. Soc., Volume 4 (2017) no. 1, pp. 110-128 | MR | Zbl
[8] Multiple vector-valued inequalities via the helicoidal method, Anal. PDE, Volume 9 (2016) no. 8, pp. 1931-1988 | DOI | MR | Zbl
[9] Sharp weighted norm estimates beyond Calderón-Zygmund theory, Anal. PDE, Volume 9 (2016) no. 5, pp. 1079-1113 | DOI | MR | Zbl
[10] A note on Calderón-Zygmund singular integral convolution operators, Bull. Am. Math. Soc., Volume 16 (1987) no. 2, pp. 271-273 | DOI | MR | Zbl
[11] Interpolations by bounded analytic functions and the corona problem, Ann. Math., Volume 76 (1962), pp. 547-559 | DOI | MR | Zbl
[12] Wavelets, Calderón-Zygmund Operators and Multilinear Operators, Cambridge Studies in Advanced Mathematics, 48, Cambridge University Press, 1997, xix+314 pages | Zbl
[13] A sparse domination principle for rough singular integrals, Anal. PDE, Volume 10 (2017) no. 5, pp. 1255-1284 | DOI | MR | Zbl
[14] Riesz transform and perturbation, J. Geom. Anal., Volume 17 (2007) no. 2, pp. 213-226 | DOI | MR | Zbl
[15] Sharp weighted estimates for classical operators, Adv. Math., Volume 229 (2012) no. 1, pp. 408-441 | DOI | MR | Zbl
[16] Domination of multilinear singular integrals by positive sparse forms (2016) (http://arxiv.org/abs/1603.05317, to appear in J. Lond. Math. Soc.)
[17] An elementary proof of the Bound, Isr. J. Math., Volume 217 (2017), pp. 181-195 | Zbl
[18] The molecular characterization of weighted Hardy spaces, J. Funct. Anal., Volume 188 (2002) no. 2, pp. 442-460 | DOI | MR | Zbl
[19] A wavelet characterization for the dual of weighted Hardy spaces, Proc. Am. Math. Soc., Volume 137 (2009) no. 12, pp. 4219-4225 | DOI | MR | Zbl
[20] boundedness of Riesz transforms, J. Math. Anal. Appl., Volume 301 (2005) no. 2, pp. 394-400 | DOI | MR | Zbl
[21] A pointwise estimate for the local sharp maximal function with applications to singular integrals, Bull. Lond. Math. Soc., Volume 42 (2010) no. 5, pp. 843-856 | Zbl
[22] Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals, Adv. Math., Volume 226 (2011) no. 5, pp. 3912-3926 | DOI | MR | Zbl
[23] On an estimate of Calderón-Zygmund operators by dyadic positive operators, J. Anal. Math., Volume 121 (2013), pp. 141-161 | Zbl
[24] A simple proof of the conjecture, Int. Math. Res. Not., Volume 14 (2013), pp. 3159-3170 | MR | Zbl
[25] On pointwise estimates involving sparse operators, New York J. Math., Volume 22 (2016), pp. 341-349 http://nyjm.albany.edu:8000/j/2016/22_341.html | MR | Zbl
[26] Intuitive dyadic calculus the basics (2015) (http://arxiv.org/abs/1508.05639, to appear in Expo. Math.)
[27] Ondelettes et opérateurs. II, Actualités Mathématiques., Hermann, 1990, p. i-xii and 217–384 (Opérateurs de Calderón-Zygmund.) | MR | Zbl
[28] Classical and Multilinear Harmonic Analysis, Cambridge Studies in Advanced Mathematics, 137, Cambridge University Press, 2013, xviii+370 pages | Zbl
[29] estimates for the biest. I. The Walsh case, Math. Ann., Volume 329 (2004) no. 3, pp. 401-426 | DOI | MR | Zbl
[30] Iterations of Hardy-Littlewood maximal functions, Proc. Am. Math. Soc., Volume 101 (1987) no. 2, pp. 272-276 | DOI | MR | Zbl
[31] Harmonic analysis real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993, xiv+695 pages (With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III) | MR | Zbl
Cité par Sources :