de Jong a conjecturé que sur une variété lisse projective connexe sur un corps algébriquement clos de caractéristique , de groupe fondamental étale trivial, tout isocristal est constant. Nous prouvons cette conjecture sous certaines hypothèses supplémentaires.
It is conjectured by de Jong that, if is a connected smooth projective variety over an algebraically closed field k of characteristic with trivial étale fundamental group, any isocrystal on is constant. We prove this conjecture under certain additional assumptions.
Révisé le :
Accepté le :
Publié le :
Keywords: isocrystals, simply connected varieties
Mot clés : isocristaux, variétés simplement connexes
Esnault, Hélène 1 ; Shiho, Atsushi 2
@article{AIF_2018__68_5_2109_0, author = {Esnault, H\'el\`ene and Shiho, Atsushi}, title = {Convergent isocrystals on simply connected varieties}, journal = {Annales de l'Institut Fourier}, pages = {2109--2148}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {5}, year = {2018}, doi = {10.5802/aif.3204}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3204/} }
TY - JOUR AU - Esnault, Hélène AU - Shiho, Atsushi TI - Convergent isocrystals on simply connected varieties JO - Annales de l'Institut Fourier PY - 2018 SP - 2109 EP - 2148 VL - 68 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3204/ DO - 10.5802/aif.3204 LA - en ID - AIF_2018__68_5_2109_0 ER -
%0 Journal Article %A Esnault, Hélène %A Shiho, Atsushi %T Convergent isocrystals on simply connected varieties %J Annales de l'Institut Fourier %D 2018 %P 2109-2148 %V 68 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3204/ %R 10.5802/aif.3204 %G en %F AIF_2018__68_5_2109_0
Esnault, Hélène; Shiho, Atsushi. Convergent isocrystals on simply connected varieties. Annales de l'Institut Fourier, Tome 68 (2018) no. 5, pp. 2109-2148. doi : 10.5802/aif.3204. https://aif.centre-mersenne.org/articles/10.5802/aif.3204/
[1] Théorème de changement de base pour un morphisme lisse, et applications, Théorie des Topos et Cohomologie Étale des Schémas (SGA4 XVI) (Lecture Notes in Math.), Volume 305 (1973), pp. 206-249 | Zbl
[2] Cohomologie cristalline des schémas de caractéristique , Lecture Notes in Math., 407, Springer, 1974 | Zbl
[3] Cohomologie rigide et cohomologie rigide à supports propres : première partie, prépublication de l’IRMAR (1996), pp. 1-91
[4] -modules arithmétiques I: Opérateurs différentiels de niveau fini, Ann. Sci. Éc. Norm. Supér., Volume 29 (1996) no. 2, pp. 185-272 | Zbl
[5] -modules arithmétiques II: Descente par Frobenius, Mém. Soc. Math. Fr., Nouv. Sér., Volume 81 (2000), pp. 1-136 | Zbl
[6] A note on Frobenius divided modules in mixed characteristics, Bull. Soc. Math. Fr., Volume 140 (2012) no. 3, pp. 441-458 | Zbl
[7] Notes on crystalline cohomology, Mathematical Notes, Princeton University Press, 1978 | Zbl
[8] -isocrystals and -adic representations, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) (Proceedings of Symposia in Pure Mathematics), Volume 46 (1987), pp. 111-138 | Zbl
[9] Simply connected projective manifolds in characteristic have no nontrivial stratified bundles, Invent. Math., Volume 181 (2010) no. 3, pp. 449-465 | Zbl
[10] Chern classes of crystals (to appear in Trans. Am. Math. Soc.)
[11] Flat vector bundles and the fundamental group in non-zero characteristics, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 2 (1975), pp. 1-31 | Zbl
[12] Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique, Mém. Soc. Math. Fr., Nouv. Sér., Volume 21 (1985), pp. 1-87 | Zbl
[13] Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie), Publ. Math., Inst. Hautes Étud. Sci., Volume 32 (1967), pp. 5-361 | Zbl
[14] Crystals and de Rham cohomology of schemes, Dix Exposés sur la Cohomologie des Schémas (Advanced Studies Pure Math.), Volume 3 (1968), pp. 306-358 | Zbl
[15] Représentations linéaires et compactifications profinies des groupes discrets, Manuscr. Math., Volume 2 (1970), pp. 375-396 | Zbl
[16] Revêtements étales et groupe fondamental, Lecture Notes in Math., 224, Springer, 1971 | Zbl
[17] The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Vieweg, 1997 | Zbl
[18] Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979), pp. 501-661 | Zbl
[19] Semistable sheaves in mixed characteristics, Duke Math. J., Volume 124 (2004), pp. 571-586
[20] Semistable sheaves in positive characteristic, Ann. Math., Volume 159 (2004), pp. 251-276 | Zbl
[21] On the -fundamental group scheme, Ann. Inst. Fourier, Volume 61 (2011), pp. 2077-2119 | Zbl
[22] Semistable modules over Lie algebroids in positive characteristic, Doc. Math., Volume 19 (2014), pp. 509-540 | Zbl
[23] Bogomolov’s inequality for Higgs sheaves in positive characteristic, Invent. Math., Volume 199 (2015), pp. 889-920 | Zbl
[24] Generic positivity and foliations in positive characteristic, Adv. Math., Volume 277 (2015), pp. 1-23 | Zbl
[25] Valuative criteria for families of vector bundles on algebraic varieties, Ann. Math., Volume 101 (1975), pp. 88-110 | Zbl
[26] Rigid cohomology, Cambridge Tracts in Mathematics, 172, Cambridge University Press, 2007 | Zbl
[27] On isomorphic matrix representations of infinite groups, Mat. Sb. N.S., Volume 8(50) (1940), pp. 405-422 | Zbl
[28] Homogeneous bundles in characteristic , Algebraic geometry—open problems (Ravello, 1982) (Lecture Notes in Math.), Volume 997 (1983), pp. 315-320 | Zbl
[29] Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, 1970 | Zbl
[30] Cohomology of the infinitesimal site, Ann. Sci. Éc. Norm. Supér., Volume 8 (1975), pp. 295-318 | Zbl
[31] -isocrystals and de Rham cohomology II: Convergent isocrystals, Duke Math. J., Volume 51 (1984), pp. 765-850 | Zbl
[32] The convergent topos in characteristic , The Grothendieck Festschrift (Progress in Math.), Volume 88 (1990), pp. 133-162 | Zbl
[33] Nonabelian Hodge theory in characteristic , Publ. Math., Inst. Hautes Étud. Sci., Volume 106 (2007), pp. 1-138 | Zbl
[34] Some remarks on the instability flag, Tohoku Math. J., Volume 36 (1984), pp. 269-291 | Zbl
[35] Fundamental group schemes for stratified sheaves, J. Algebra, Volume 317 (2007) no. 2, pp. 691-713 | Zbl
[36] A note on convergent isocrystals on simply connected varieties (2014) (https://arxiv.org/abs/1411.0456)
Cité par Sources :