Dans cet article, nous obtenons des estimations de l’ordre moyen, sur les valeurs de la forme cubique , de fonctions multiplicatives soumises à certaines conditions. On donne en particulier une formule asymptotique du nombre d’entiers friables de la forme , valide pour un paramètre de friabilité non borné. La méthode utilisée s’applique également à des fonctions multiplicatives oscillantes comme la fonction de Mœbius : il s’ensuit une nouvelle preuve de la conjecture de Chowla pour la forme , récemment démontrée par Helfgott dans le cas plus général des formes binaires cubiques irréductibles.
In this article, we give some estimates for the average order, over the values of the cubic form , for some multiplicative functions satisfying certain conditions. We provide an asymptotic formula for the number of -friable values of , valid in an unbounded range. Our method also applies to some oscillating multiplicative functions like the Mœbius function : this gives another proof of the Chowla conjecture for the form recently proved by Helfgott in the more general case of binary and irreducible cubic forms.
Révisé le :
Accepté le :
Publié le :
Mot clés : Entiers friables, fonctions multiplicatives, cribles, formes binaires
Keywords: Friable integers, multiplicative functions, sieves, binary forms
Lachand, Armand 1
@article{AIF_2018__68_3_1297_0, author = {Lachand, Armand}, title = {Fonctions arithm\'etiques et formes binaires irr\'eductibles de degr\'e $3$}, journal = {Annales de l'Institut Fourier}, pages = {1297--1363}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {3}, year = {2018}, doi = {10.5802/aif.3189}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3189/} }
TY - JOUR AU - Lachand, Armand TI - Fonctions arithmétiques et formes binaires irréductibles de degré $3$ JO - Annales de l'Institut Fourier PY - 2018 SP - 1297 EP - 1363 VL - 68 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3189/ DO - 10.5802/aif.3189 LA - fr ID - AIF_2018__68_3_1297_0 ER -
%0 Journal Article %A Lachand, Armand %T Fonctions arithmétiques et formes binaires irréductibles de degré $3$ %J Annales de l'Institut Fourier %D 2018 %P 1297-1363 %V 68 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3189/ %R 10.5802/aif.3189 %G fr %F AIF_2018__68_3_1297_0
Lachand, Armand. Fonctions arithmétiques et formes binaires irréductibles de degré $3$. Annales de l'Institut Fourier, Tome 68 (2018) no. 3, pp. 1297-1363. doi : 10.5802/aif.3189. https://aif.centre-mersenne.org/articles/10.5802/aif.3189/
[1] Friable values of binary forms, Comment. Math. Helv., Volume 87 (2012) no. 3, pp. 639-667 | DOI | Zbl
[2] The asymptotic sieve, Rend. Accad. Naz. XL, Volume 1-2 (1976), pp. 243-269 | Zbl
[3] Sums of arithmetic functions over values of binary forms, Acta Arith., Volume 125 (2006) no. 3, pp. 291-304 | DOI | Zbl
[4] Moyennes de fonctions arithmétiques de formes binaires, Mathematika, Volume 58 (2012) no. 2, pp. 290-304 | DOI | Zbl
[5] Sur la conjecture de Manin pour certaines surfaces de Châtelet, J. Inst. Math. Jussieu, Volume 12 (2013) no. 4, pp. 759-819 | DOI | Zbl
[6] On the number of positive integers and free prime factors . II, Nederl. Akad. Wetensch. Proc. Ser. A, Volume 69 (1966), pp. 239-247 | DOI
[7] The Riemann hypothesis and Hilbert’s tenth problem, Norske Vid. Selsk. Forhdl., Volume 38 (1965), pp. 62-64 | Zbl
[8] Prime numbers, a computational perspective, Springer, 2005, xvi+597 pages | Zbl
[9] On the divisor-sum problem for binary forms, J. Reine Angew. Math., Volume 507 (1999), pp. 107-129 | DOI | Zbl
[10] Sur la somme de diviseurs , C. R. Acad. Sci. Paris Sér. A, Volume 272 (1971), pp. 849-852 | Zbl
[11] Opera de cribro, American Mathematical Society Colloquium Publications, 57, American Mathematical Society, 2010, xx+527 pages | Zbl
[12] On the divisor-sum problem for binary cubic forms, Acta Arith., Volume 17 (1970), pp. 1-28 | DOI | Zbl
[13] Large prime factors of binary forms, J. Number Theory, Volume 3 (1971), pp. 35-59 errata in ibid. 9 (1977), p. 561-562 | DOI | Zbl
[14] Power-free values of binary forms, Q. J. Math., Oxf. II. Ser., Volume 43 (1992) no. 169, pp. 45-65 | DOI | Zbl
[15] Sieve methods, London Mathematical Society Monographs, 4, Academic Press, 1974, xiv+364 pages (loose errata) | Zbl
[16] Moyennes de certaines fonctions multiplicatives sur les entiers friables. II, Proc. Lond. Math. Soc., Volume 96 (2008) no. 1, pp. 107-135 | DOI | Zbl
[17] Diophantine approximation with square-free numbers, Math. Z., Volume 187 (1984) no. 3, pp. 335-344 | DOI | Zbl
[18] Primes represented by , Acta Math., Volume 186 (2001) no. 1, pp. 1-84 | DOI | Zbl
[19] Primes represented by binary cubic forms, Proc. Lond. Math. Soc., Volume 84 (2002) no. 2, pp. 257-288 | DOI | Zbl
[20] On the representation of primes by cubic polynomials in two variables, Proc. Lond. Math. Soc., Volume 88 (2004) no. 2, pp. 289-312 | DOI | Zbl
[21] The parity problem for irreducible cubic forms (2005) (http://arxiv.org/abs/math/0501177)
[22] Entiers friables et formes binaires, Université de Lorraine (France) (2014) https://tel.archives-ouvertes.fr/tel-01104211 (Ph. D. Thesis)
[23] On elementary methods in prime number-theory and their limitations, Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, Johan Grundt Tanums Forlag, 1952, pp. 13-22 | Zbl
[24] A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math., Volume 313 (1980), pp. 161-170 | Zbl
[25] Sur une question d’Erdős et Schinzel, A tribute to Paul Erdős, Cambridge University Press, Cambridge, 1990, pp. 405-443 | Zbl
[26] Introduction à la théorie analytique et probabiliste des nombres, Échelles, Belin, 2008, 592 pages
[27] Lehrbuch der Algebra. 2, F. Vieweg & Sohn, 1899, x+247 pages | Zbl
Cité par Sources :