Dans ce papier, nous montrons une conjecture due à Tian concernant une estimation partielle pour une suite de métriques de Kähler–Einstein tordues sur les variétés de Fano, ou plus généralement, pour une suite des solitons de Kähler–Ricci tordus. Ceci généralise les résultats de Donaldson–Sun–Tian pour une suite de métriques de Kähler–Einstein sur les variétés de Fano. Comme application, nous démontrons que la limite de Gromov–Hausdorff de la suite est homéomorphe à une variété de -Fano à singularités log terminales qui admet un soliton de Kähler–Ricci sur sa partie régulière.
In this paper, we prove the partial -estimate conjecture of Tian for an almost Kähler–Einstein metrics sequence of Fano manifolds, or more general, an almost Kähler–Ricci solitons sequence. This generalizes Donaldson–Sun–Tian’s result for a Kähler–Einstein metrics sequence of Fano manifolds. As an application, we prove that the Gromov–Hausdorff limit of sequence is homeomorphic to a log terminal -Fano variety which admits a Kähler–Ricci soliton on its smooth part.
Révisé le :
Accepté le :
Publié le :
Keywords: Kähler–Einstein metrics, almost Kähler–Ricci solitons, Ricci flow, $\bar{\partial }$-equation
Mot clés : semblable banalité, autosimilarité logarithmique, loi de Gauß
Jiang, Wenshuai 1 ; Wang, Feng 1 ; Zhu, Xiaohua 2
@article{AIF_2017__67_3_1279_0, author = {Jiang, Wenshuai and Wang, Feng and Zhu, Xiaohua}, title = {Bergman {Kernels} for a sequence of almost {K\"ahler{\textendash}Ricci} solitons}, journal = {Annales de l'Institut Fourier}, pages = {1279--1320}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {3}, year = {2017}, doi = {10.5802/aif.3110}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3110/} }
TY - JOUR AU - Jiang, Wenshuai AU - Wang, Feng AU - Zhu, Xiaohua TI - Bergman Kernels for a sequence of almost Kähler–Ricci solitons JO - Annales de l'Institut Fourier PY - 2017 SP - 1279 EP - 1320 VL - 67 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3110/ DO - 10.5802/aif.3110 LA - en ID - AIF_2017__67_3_1279_0 ER -
%0 Journal Article %A Jiang, Wenshuai %A Wang, Feng %A Zhu, Xiaohua %T Bergman Kernels for a sequence of almost Kähler–Ricci solitons %J Annales de l'Institut Fourier %D 2017 %P 1279-1320 %V 67 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3110/ %R 10.5802/aif.3110 %G en %F AIF_2017__67_3_1279_0
Jiang, Wenshuai; Wang, Feng; Zhu, Xiaohua. Bergman Kernels for a sequence of almost Kähler–Ricci solitons. Annales de l'Institut Fourier, Tome 67 (2017) no. 3, pp. 1279-1320. doi : 10.5802/aif.3110. https://aif.centre-mersenne.org/articles/10.5802/aif.3110/
[1] Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties (2011) (https://arxiv.org/abs/1111.7158)
[2] Complex optimal transport and the pluripotential theory of Kähler–Ricci solitons (2014) (https://arxiv.org/abs/1401.8264)
[3] Kähler–Ricci solitons on compact complex manifolds with , Geom. Funct. Anal., Volume 15 (2005) no. 3, pp. 697-719 | DOI
[4] On the structure of spaces with Ricci curvature bounded below. I, J. Differ. Geom., Volume 46 (1997) no. 3, pp. 406-480 | DOI
[5] On the singularities of spaces with bounded Ricci curvature, Geom. Funct. Anal., Volume 12 (2002) no. 5, pp. 873-914 | DOI
[6] Kähler–Einstein metrics on Fano manifolds. I, II and III, J. Am. Math. Soc., Volume 28 (2015) no. 1, p. 183-197, 199–234 and 235–278 | DOI
[7] Ricci curvature and volume convergence, Ann. Math., Volume 145 (1997) no. 3, pp. 477-501 | DOI
[8] Scalar curvature and stability of toric varieties, J. Differ. Geom., Volume 62 (2002) no. 2, pp. 289-349 | DOI
[9] Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math., Volume 213 (2014) no. 1, pp. 63-106 | DOI
[10] Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2015, xiii+518 pages
[11] Lipschitz convergence of Riemannian manifolds, Pac. J. Math., Volume 131 (1988) no. 1, pp. 119-141 | DOI
[12] Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics., 5, American Mathematical Society, 2000, xii+290 pages
[13] Bergman kernel along the Kähler–Ricci flow and Tian’s conjecture, J. Reine Angew. Math., Volume 717 (2016), pp. 195-226
[14] Kähler–Einstein metrics and K-stability, Princeton University (USA) (2012) (Ph. D. Thesis)
[15] On the Sobolev constant and the -spectrum of a compact Riemannian manifold, Ann. Sci. Éc. Norm. Supér., Volume 13 (1980), pp. 451-468 | DOI
[16] Multiplier Hermitian structures on Kähler manifolds, Nagoya Math. J., Volume 170 (2003), pp. 73-115 | DOI
[17] Stable pairs and coercive estimates for the Mabuchi functional (2013) (https://arxiv.org/abs/1308.4377)
[18] The entropy formula for the Ricci flow and its geometric applications (2002) (https://arxiv.org/abs/math/0211159)
[19] Degeneration of Kähler–Ricci solitons on Fano manifolds, Zesz. Nauk. Uniw. Jagiell., Univ. Iagell. Acta Math., Volume 52 (2015), pp. 29-43
[20] Techniques for the analytic proof of the finite generation of the canonical ring (2008) (https://arxiv.org/abs/0811.1211)
[21] Kähler–Einstein metrics with positive scalar curvature, Invent. Math., Volume 130 (1997) no. 1, pp. 1-37 | DOI
[22] Existence of Einstein metrics on Fano manifolds, Metric and differential geometry (Progress in Mathematics), Volume 297, Springer, 2012, pp. 119-159
[23] Partial -estimates for Kähler-Einstein metrics, Commun. Math. Stat., Volume 1 (2013) no. 2, pp. 105-113 | DOI
[24] Stability of pairs (2013) (https://arxiv.org/abs/1310.5544)
[25] K-Stability and Kähler-Einstein Metrics, Commun. Pure Appl. Math., Volume 68 (2015) no. 7, pp. 1085-1156 corrigendum ibid. 68 (2015), no. 11, p. 2082-2083 | DOI
[26] On the structure of almost Einstein manifolds, J. Am. Math. Soc., Volume 28 (2015) no. 4, pp. 1169-1209 | DOI
[27] Regularity of Kähler–Ricci flows on Fano manifolds, Acta Math., Volume 216 (2016) no. 1, pp. 127-176 | DOI
[28] Uniqueness of Kähler–Ricci solitons, Acta Math., Volume 184 (2000) no. 2, pp. 271-305 | DOI
[29] Modified Futaki invariant and equivariant Riemann–Roch formula, Adv. Math., Volume 289 (2016), pp. 1205-1235 | DOI
[30] On the structure of spaces with Bakry–Émery Ricci curvature bounded below (2013) (https://arxiv.org/abs/1304.4490v1)
[31] Fano manifolds with weak almost Kähler–Ricci solitons, Int. Math. Res. Not. (2014) no. 9, pp. 2437-2464
[32] Comparison geometry for the Bakry–Emery Ricci tensor, J. Differ. Geom., Volume 83 (2009) no. 2, pp. 337-405 | DOI
[33] Kähler–Ricci solitons and generalized Tian–Zhu’s invariant, Int. J. Math., Volume 25 (2014) no. 7, ID 1450068, 13 p. pages | DOI
[34] The logarithmic Sobolev inequality along the Ricci flow (2007) (https://arxiv.org/abs/0707.2424)
[35] A uniform Sobolev inequality under Ricci flow, Int. Math. Res. Not., Volume 2007 (2007) no. 17, ID rnm056 pages erratum in ibid. 2007 (2007), no. 19, ID rnm094
Cité par Sources :