Des bornes inférieures sur l’exposant de compression hilbertienne équivariante sont données en utilisant les marches aléatoires. Plus précisément, si la probabilité de retour de la marche aléatoire est pour un graphe de Cayley, alors . Ceci motive l’étude de relations supplémentaires entre la probabilité de retour, la vitesse, l’entropie et la croissance du volume. Par exemple, if , alors l’exposant de vitesse est .
Avec une hypothèse plus forte sur le comportement du noyau de la chaleur hors de la diagonale, la borne inférieure sur la compression . Par un résultat de Naor et Peres sur la compression et la vitesse des marches aléatoires, ceci donne un estimé prometteur sur la vitesse et implique la propriété de Liouville si .
Lower bounds on the equivariant Hilbertian compression exponent are obtained using random walks. More precisely, if the probability of return of the simple random walk is in a Cayley graph then . This motivates the study of further relations between return probability, speed, entropy and volume growth. For example, if then the speed exponent is .
Under a strong assumption on the off-diagonal decay of the heat kernel, the lower bound on compression improves to . Using a result from Naor & Peres on compression and the speed of random walks, this yields very promising bounds on speed and implies the Liouville property if .
Révisé le :
Accepté le :
Publié le :
Keywords: Hilbertian compression, random walks on groups, entropy, drift, growth of groups
Mot clés : compression hilbertienne, marches aléatoires sur les groupes, entropie, vitesse, croissance des groupes
Gournay, Antoine 1
@article{AIF_2016__66_6_2435_0, author = {Gournay, Antoine}, title = {The {Liouville} property and {Hilbertian} compression}, journal = {Annales de l'Institut Fourier}, pages = {2435--2454}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {6}, year = {2016}, doi = {10.5802/aif.3067}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3067/} }
TY - JOUR AU - Gournay, Antoine TI - The Liouville property and Hilbertian compression JO - Annales de l'Institut Fourier PY - 2016 SP - 2435 EP - 2454 VL - 66 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3067/ DO - 10.5802/aif.3067 LA - en ID - AIF_2016__66_6_2435_0 ER -
%0 Journal Article %A Gournay, Antoine %T The Liouville property and Hilbertian compression %J Annales de l'Institut Fourier %D 2016 %P 2435-2454 %V 66 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3067/ %R 10.5802/aif.3067 %G en %F AIF_2016__66_6_2435_0
Gournay, Antoine. The Liouville property and Hilbertian compression. Annales de l'Institut Fourier, Tome 66 (2016) no. 6, pp. 2435-2454. doi : 10.5802/aif.3067. https://aif.centre-mersenne.org/articles/10.5802/aif.3067/
[1] On the joint behaviour of speed and entropy of random walks on groups (http://arxiv.org/abs/1509.00256)
[2] Speed exponents for random walks on groups (http://arxiv.org/abs/1203.6226)
[3] Metrics on diagram groups and uniform embeddings in a Hilbert space, Comment. Math. Helv., Volume 81 (2006) no. 4, pp. 911-929 | DOI
[4] Amenable groups with very poor compression into Lebesgue spaces, Duke Math. J., Volume 159 (2011) no. 2, pp. 187-222 | DOI
[5] The wreath product of with has Hilbert compression exponent 2/3, Proc. Amer. Math. Soc., Volume 137 (2009) no. 1, pp. 85-90 | DOI
[6] Entropie des groupes de type fini, C. R. Acad. Sci. Paris Sér. A-B, Volume 275 (1972), p. A1363-A1366
[7] Théorème de Choquet-Deny pour les groupes à croissance non exponentielle, C. R. Acad. Sci. Paris Sér. A, Volume 279 (1974), pp. 25-28
[8] Imbeddings into groups of intermediate growth (http://arxiv.org/abs/1403.5584)
[9] Proper affine isometric actions of amenable groups, Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993) (London Math. Soc. Lecture Note Ser.), Volume 227, Cambridge Univ. Press, Cambridge, 1995, pp. 1-4
[10] Spectral distribution and -isoperimetric profile of Laplace operators on groups, Math. Ann., Volume 354 (2012), pp. 43-72 | DOI
[11] Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, 48, American Mathematical Society, providence, 2000
[12] Speed of random walks, isoperimetry and compression of finitely generated groups (https://arxiv.org/abs/1510.08040)
[13] The Haagerup property is not invariant under quasi-isometry (https://arxiv.org/abs/1403.5446)
[14] A transmutation formula for Markov chains, Bull. Sci. Math., Volume 109 (1985) no. 4, pp. 399-405
[15] On-diagonal lower bounds for heat kernels and Markov chains, Duke Math. J., Volume 89 (1997) no. 1, pp. 133-199 | DOI
[16] A geometric approach to on-diagonal heat kernels lower bounds on groups, Ann. Inst. Fourier, Volume 51 (2001) no. 6, pp. 1763-1827 | DOI
[17] The discrete integral maximum principle and its applications, Tohoku Math. J., Volume 57 (2005) no. 4, pp. 447-621 | DOI
[18] Properties of random walks on discrete groups: Time regularity and off-diagonal estimates, Bull. Sci. math., Volume 132 (2008), pp. 359-381 | DOI
[19] On drift and entropy growth for random walks on groups, Ann. Probab., Volume 31 (2003) no. 3, pp. 1193-1204 | DOI
[20] Critical constants for recurrence of random walks on -spaces, Ann. Inst. Fourier, Volume 55 (2005) no. 2, pp. 493-509 | DOI
[21] Homomorphisms to constructed from random walks, Ann. Inst. Fourier, Volume 60 (2010) no. 6, pp. 2095-2113 | DOI
[22] Exactness and uniform embeddability of discrete groups, J. London Math. Soc., Volume 70 (2004) no. 3, pp. 703-718 | DOI
[23] Boundary behaviour of Thompson’s group (in preparation)
[24] Full Banach mean values on countable groups, Math. Scand., Volume 7 (1959), pp. 146-156 | DOI
[25] Symmetric random walks on groups, Trans. Amer. Math. Soc., Volume 92 (1959), pp. 336-354 | DOI
[26] Non-Liouville groups with return probability exponent at most 1/2 (http://arxiv.org/abs/1408.6895)
[27] Harmonic maps on amenable groups and a diffusive lower bound for random walks, Ann. Probab., Volume 41 (2013) no. 5, pp. 3392-3419 | DOI
[28] Embeddings of discrete groups and the speed of random walks, Int. Math. Res. Not. (2008), 34 pages
[29] -compression, traveling salesmen, and stable walks, Duke Math. J., Volume 157 (2011) no. 1, pp. 53-108 | DOI
[30] On the stability of the behavior of random walks on groups, J. Geom. Anal., Volume 10 (2000) no. 4, pp. 713-737 | DOI
[31] On random walks in wreath products, Ann. Probab., Volume 30 (2002) no. 2, pp. 948-977 | DOI
[32] Rate of escape of random walks on wreath products and related groups, Ann. Probab., Volume 31 (2003) no. 4, pp. 1917-1934 | DOI
[33] Random walks and isoperimetric profiles under moment conditions (https://arxiv.org/abs/1501.05929)
[34] Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces, Comment. Math. Helv., Volume 86 (2011) no. 3, pp. 499-535 | DOI
[35] The rate of escape of random walks on polycyclic and metabelian groups, Ann. Inst. Henri Poincaré Probab. Stat., Volume 49 (2013) no. 1, pp. 270-287 | DOI
[36] Nouvelles approches de la propriété (T) de Kazhdan, Astérisque, 294, Société Mathématique de France, 2004, vii+97–124 pages
[37] Long range estimates for Markov chains, Bull. Sci. Math., Volume 139 (1985) no. 3, pp. 225-252
[38] Random Walks on Infinite Graphs and Groups, Cambridge tracts in mathematics, 138, Cambridge University Press, 200, xi+344 pages
Cité par Sources :