Integrable planar homogeneous potentials of degree -1 with small eigenvalues
[Les potentiels intégrables homogènes de degré -1 du plan avec petites valeurs propres]
Annales de l'Institut Fourier, Tome 66 (2016) no. 6, pp. 2253-2298.

On démontre une classification complète des potentiels V méromorphiquement intégrables homogènes de degré -1, analytiques rééls sur 2 {0}. Dans le cas plus général où V est seulement méromorphe sur un ouvert d’une variété algébrique, on démontre une classification de tous les potentiels intégrables ayant un point de Darboux c tel que V ' (c)=-c,c 1 2 +c 2 2 0 et Sp( 2 V(c)){-1,0,2}. Enfin, on présente une conjecture pour les autres valeurs propres et le cas des points de Darboux dégénérés V ' (c)=0.

We give a complete classification of meromorphically integrable homogeneous potentials V of degree -1 which are real analytic on 2 {0}. In the more general case when V is only meromorphic on an open set of an algebraic variety, we give a classification of all integrable potentials having a Darboux point c with V ' (c)=-c,c 1 2 +c 2 2 0 and Sp( 2 V(c)){-1,0,2}. We eventually present a conjecture for the other eigenvalues and the degenerate Darboux point case V ' (c)=0.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3063
Classification : 37J30
Keywords: Morales-Ramis theory, homogeneous potentials, D-finiteness, higher variational equations
Mot clés : Théorie de Morales-Ramis, potentiels homogènes, D-finitude, équations variationelles supérieures

Combot, Thierry 1

1 IMB, Universié de Bourgogne 9 avenue Alain Savary 21078 Dijon Cedex (France)
@article{AIF_2016__66_6_2253_0,
     author = {Combot, Thierry},
     title = {Integrable planar homogeneous potentials of degree $-1$ with small eigenvalues},
     journal = {Annales de l'Institut Fourier},
     pages = {2253--2298},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {66},
     number = {6},
     year = {2016},
     doi = {10.5802/aif.3063},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3063/}
}
TY  - JOUR
AU  - Combot, Thierry
TI  - Integrable planar homogeneous potentials of degree $-1$ with small eigenvalues
JO  - Annales de l'Institut Fourier
PY  - 2016
SP  - 2253
EP  - 2298
VL  - 66
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3063/
DO  - 10.5802/aif.3063
LA  - en
ID  - AIF_2016__66_6_2253_0
ER  - 
%0 Journal Article
%A Combot, Thierry
%T Integrable planar homogeneous potentials of degree $-1$ with small eigenvalues
%J Annales de l'Institut Fourier
%D 2016
%P 2253-2298
%V 66
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3063/
%R 10.5802/aif.3063
%G en
%F AIF_2016__66_6_2253_0
Combot, Thierry. Integrable planar homogeneous potentials of degree $-1$ with small eigenvalues. Annales de l'Institut Fourier, Tome 66 (2016) no. 6, pp. 2253-2298. doi : 10.5802/aif.3063. https://aif.centre-mersenne.org/articles/10.5802/aif.3063/

[1] Acosta-Humánez, Primitivo B.; Álvarez-Ramírez, Martha; Delgado, Joaquín Non-integrability of some few body problems in two degrees of freedom, Qual. Theory Dyn. Syst., Volume 8 (2009) no. 2, pp. 209-239 | DOI

[2] Andrews, George E.; Askey, Richard; Roy, Ranjan Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999, xvi+664 pages | DOI

[3] Aparicio Monforte, Ainhoa Méthodes effectives pour l’intégrabilité des systèmes dynamiques, Université de Limoges, France (2012) (Ph. D. Thesis)

[4] Aparicio Monforte, Ainhoa; Weil, J.-A. A reduction method for higher order variational equations of Hamiltonian systems, Symmetries and related topics in differential and difference equations (Contemp. Math.), Volume 549, Amer. Math. Soc., Providence, RI, 2011, pp. 1-15 | DOI

[5] Audin, Michèle Les systèmes hamiltoniens et leur intégrabilité, Cours Spécialisés [Specialized Courses], 8, Société Mathématique de France, Paris; EDP Sciences, Les Ulis, 2001, viii+170 pages

[6] Barkatou, Moulay A. On rational solutions of systems of linear differential equations, J. Symbolic Comput., Volume 28 (1999) no. 4-5, pp. 547-567 (Differential algebra and differential equations) | DOI

[7] Bostan, Alin; Cluzeau, Thomas; Salvy, Bruno Fast algorithms for polynomial solutions of linear differential equations, ISSAC’05, ACM, New York, 2005, p. 45-52 (electronic) | DOI

[8] Boucher, Delphine Sur la non-intégrabilité du problème plan des trois corps de masses égales, C. R. Acad. Sci. Paris Sér. I Math., Volume 331 (2000) no. 5, pp. 391-394 | DOI

[9] Combot, Thierry Integrability conditions at order 2 for homogeneous potentials of degree -1, Nonlinearity, Volume 26 (2013) no. 1, pp. 95-120 | DOI

[10] Combot, Thierry A note on algebraic potentials and Morales-Ramis theory, Celestial Mechanics and Dynamical Astronomy, Volume 115 (2013) no. 4, pp. 397-404 | DOI

[11] Combot, Thierry; Koutschan, Christoph Third order integrability conditions for homogeneous potentials of degree -1, J. Math. Phys., Volume 53 (2012) no. 8, Paper #082704, 26 pp. pages | DOI

[12] Duval, Guillaume; Maciejewski, Andrzej J. Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 7, pp. 2839-2890 http://aif.cedram.org/item?id=AIF_2009__59_7_2839_0 | DOI

[13] Hietarinta, Jarmo A search for integrable two-dimensional Hamiltonian systems with polynomial potential, Phys. Lett. A, Volume 96 (1983) no. 6, pp. 273-278 | DOI

[14] Kimura, Tosihusa On Riemann’s equations which are solvable by quadratures, Funkcial. Ekvac., Volume 12 (1969/1970), pp. 269-281

[15] Koutschan, Christoph Advanced Applications of the Holonomic Systems Approach, RISC, Johannes Kepler University (2009) (Ph. D. Thesis)

[16] Koutschan, Christoph A fast approach to creative telescoping, Math. Comput. Sci., Volume 4 (2010) no. 2-3, pp. 259-266 | DOI

[17] Koutschan, Christoph HolonomicFunctions, 2010 (http://www.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html)

[18] Maciejewski, Andrzej J.; Przybylska, Maria All meromorphically integrable 2D Hamiltonian systems with homogeneous potential of degree 3, Phys. Lett. A, Volume 327 (2004) no. 5-6, pp. 461-473 | DOI

[19] Maciejewski, Andrzej J.; Przybylska, Maria Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential, J. Math. Phys., Volume 46 (2005) no. 6, 062901, 33 pages | DOI

[20] Maciejewski, Andrzej J.; Przybylska, Maria Non-integrability of the three-body problem, Celestial Mech. Dynam. Astronom., Volume 110 (2011) no. 1, pp. 17-30 | DOI

[21] Morales Ruiz, Juan J. Differential Galois theory and non-integrability of Hamiltonian systems, Progress in Mathematics, 179, Birkhäuser Verlag, Basel, 1999, xiv+167 pages | DOI

[22] Morales-Ruiz, Juan J.; Ramis, Jean Pierre Galoisian obstructions to integrability of Hamiltonian systems. I, Methods Appl. Anal., Volume 8 (2001) no. 1, pp. 33-95

[23] Morales-Ruiz, Juan J.; Ramis, Jean Pierre Galoisian obstructions to integrability of Hamiltonian systems. II, Methods Appl. Anal., Volume 8 (2001) no. 1, pp. 97-111

[24] Morales-Ruiz, Juan J.; Ramis, Jean Pierre A note on the non-integrability of some Hamiltonian systems with a homogeneous potential, Methods Appl. Anal., Volume 8 (2001) no. 1, pp. 113-120

[25] Morales-Ruiz, Juan J.; Ramis, Jean-Pierre; Simo, Carles Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Sci. École Norm. Sup. (4), Volume 40 (2007) no. 6, pp. 845-884 | DOI

[26] Morales-Ruiz, Juan J.; Simon, Sergi On the meromorphic non-integrability of some N-body problems, Discrete Contin. Dyn. Syst., Volume 24 (2009) no. 4, pp. 1225-1273 | DOI

[27] Polyanin, Andrei D.; Zaitsev, Valentin F. Handbook of exact solutions for ordinary differential equations, Chapman & Hall/CRC, Boca Raton, FL, 2003, xxvi+787 pages

[28] van der Put, Marius; Singer, Michael F. Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 328, Springer-Verlag, Berlin, 2003, xviii+438 pages | DOI

[29] Tsygvintsev, Alexei V. The meromorphic non-integrability of the three-body problem, J. Reine Angew. Math., Volume 537 (2001), pp. 127-149 | DOI

[30] Tsygvintsev, Alexei V. On some exceptional cases in the integrability of the three-body problem, Celestial Mech. Dynam. Astronom., Volume 99 (2007) no. 1, pp. 23-29 | DOI

[31] Yoshida, Haruo A criterion for the non-existence of an additional integral in Hamiltonian systems with a homogeneous potential, Physica D: Nonlinear Phenomena, Volume 29 (1987) no. 1-2, pp. 128-142 | DOI

[32] Zeilberger, Doron A holonomic systems approach to special functions identities, J. Comput. Appl. Math., Volume 32 (1990) no. 3, pp. 321-368 | DOI

Cité par Sources :