[Anneaux de déformation potentiellement cristallins dans le cas ordinaire]
Nous étudions les anneaux de déformation potentiellement cristallins pour une représentation Galoisienne ordinaire
We study potentially crystalline deformation rings for a residual, ordinary Galois representation
Révisé le :
Accepté le :
Publié le :
Keywords: potentially crystalline deformation rings, Serre-type conjectures, integral
Mots-clés : Anneaux de déformation potentiellement cristallins, conjectures de type Serre, théorie de Hodge
Levin, Brandon 1 ; Morra, Stefano 2
@article{AIF_2016__66_5_1923_0, author = {Levin, Brandon and Morra, Stefano}, title = {Potentially crystalline deformation rings in the ordinary case}, journal = {Annales de l'Institut Fourier}, pages = {1923--1964}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {5}, year = {2016}, doi = {10.5802/aif.3053}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3053/} }
TY - JOUR AU - Levin, Brandon AU - Morra, Stefano TI - Potentially crystalline deformation rings in the ordinary case JO - Annales de l'Institut Fourier PY - 2016 SP - 1923 EP - 1964 VL - 66 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3053/ DO - 10.5802/aif.3053 LA - en ID - AIF_2016__66_5_1923_0 ER -
%0 Journal Article %A Levin, Brandon %A Morra, Stefano %T Potentially crystalline deformation rings in the ordinary case %J Annales de l'Institut Fourier %D 2016 %P 1923-1964 %V 66 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3053/ %R 10.5802/aif.3053 %G en %F AIF_2016__66_5_1923_0
Levin, Brandon; Morra, Stefano. Potentially crystalline deformation rings in the ordinary case. Annales de l'Institut Fourier, Tome 66 (2016) no. 5, pp. 1923-1964. doi : 10.5802/aif.3053. https://aif.centre-mersenne.org/articles/10.5802/aif.3053/
[1] Représentations semi-stables et modules fortement divisibles, Invent. Math., Volume 136 (1999) no. 1, pp. 89-122 | DOI
[2] Une application de corps des normes, Compositio Math., Volume 117 (1999) no. 2, pp. 189-203 | DOI
[3] Sur quelques représentations modulaires et
[4] Sur un problème de compatibilité local-global modulo
[5] Ordinary representations of
[6] Multiplicités modulaires et représentations de
[7] Multiplicités modulaires raffinées, Bull. Soc. Math. France, Volume 142 (2014) no. 1, pp. 127-175
[8] Towards a modulo
[9] On Serre’s conjecture for mod
[10] Quasi-semi-stable representations, Bull. Soc. Math. France, Volume 137 (2009) no. 2, pp. 185-223
[11] Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc., Volume 12 (1999) no. 2, pp. 521-567 | DOI
[12] A geometric perspective on the Breuil-Mézard conjecture, J. Inst. Math. Jussieu, Volume 13 (2014) no. 1, pp. 183-223 | DOI
[13] Weight cycling and Serre-type conjectures for unitary groups, Duke Math. J., Volume 162 (2013) no. 9, pp. 1649-1722 | DOI
[14] Lattices in the cohomology of Shimura curves, Invent. Math., Volume 200 (2015) no. 1, pp. 1-96 | DOI
[15] Représentations
[16] Personal communication, email of November 1, 2015
[17] Automorphic lifts of prescribed types, Math. Ann., Volume 350 (2011) no. 1, pp. 107-144 | DOI
[18] General Serre weight conjectures (2015) (preprint, http://arxiv.org/abs/1509.02527)
[19] The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, Forum Math. Pi, Volume 2 (2014), e1, 56 pages | DOI
[20] The weight in a Serre-type conjecture for tame
[21] On local/global compatibility for
[22] Crystalline representations and
[23] Potentially semi-stable deformation rings, J. Amer. Math. Soc., Volume 21 (2008) no. 2, pp. 513-546 | DOI
[24] Moduli of finite flat group schemes, and modularity, Ann. of Math. (2), Volume 170 (2009) no. 3, pp. 1085-1180 | DOI
[25] Potentially crystalline deformation rings and Serre weight conjectures (Shapes and Shadows) (2015) (in preparation)
[26] On lattices in semi-stable representations: a proof of a conjecture of Breuil, Compos. Math., Volume 144 (2008) no. 1, pp. 61-88 | DOI
[27] On a conjecture of Conrad, Diamond, and Taylor, Duke Math. J., Volume 128 (2005) no. 1, pp. 141-197 | DOI
[28] Sur les représentations modulaires de degré
- Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows, Inventiones mathematicae, Volume 212 (2018) no. 1, p. 1 | DOI:10.1007/s00222-017-0762-0
Cité par 1 document. Sources : Crossref