Nous étudions des feuilletages de codimension un dans l’espace projectif sur en regardant leurs perturbations du premier ordre : déploiements et déformations. Nous prêtons une attention particulière aux feuilletages rationnels et logarithmiques.
Pour une forme différentielle définissant un feuilletage de codimension un, nous présentons un module gradué , lié aux déploiements du premier ordre de . Si est une forme générique de type rationnel ou logarithmique, comme une première application de la construction de , nous classifions les déformations du premier ordre qui apparaissent à partir des déploiements du premier order. Ensuite, nous comptons le nombre de points isolés dans l’ensemble singulier de , en termes d’un polynôme de Hilbert associé à .
Nous revoyons la notion de régularité de en termes d’un complexe long de modules gradués que nous introduisons dans ce travail. Nous utilisons ce complexe pour prouver que, pour des feuilletages rationnels et logarithmiques génériques, est régulièr si et seulement si tout déploiement est trivial modulo isomorphisme.
We study codimension one foliations in projective space over by looking at its first order perturbations: unfoldings and deformations. We give special attention to foliations of rational and logarithmic type.
For a differential form defining a codimension one foliation, we present a graded module , related to the first order unfoldings of . If is a generic form of rational or logarithmic type, as a first application of the construction of , we classify the first order deformations that arise from first order unfoldings. Then, we count the number of isolated points in the singular set of , in terms of a Hilbert polynomial associated to .
We review the notion of regularity of in terms of a long complex of graded modules that we also introduce in this work. We use this complex to prove that, for generic rational and logarithmic foliations, is regular if and only if every unfolding is trivial up to isomorphism.
Accepté le :
Publié le :
Keywords: foliations, codimension one, unfoldings, deformations
Mot clés : feuilletages, codimension un, déploiements, déformations
Molinuevo, Ariel 1
@article{AIF_2016__66_4_1583_0, author = {Molinuevo, Ariel}, title = {Unfoldings and deformations of rational and logarithmic foliations}, journal = {Annales de l'Institut Fourier}, pages = {1583--1613}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {4}, year = {2016}, doi = {10.5802/aif.3044}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3044/} }
TY - JOUR AU - Molinuevo, Ariel TI - Unfoldings and deformations of rational and logarithmic foliations JO - Annales de l'Institut Fourier PY - 2016 SP - 1583 EP - 1613 VL - 66 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3044/ DO - 10.5802/aif.3044 LA - en ID - AIF_2016__66_4_1583_0 ER -
%0 Journal Article %A Molinuevo, Ariel %T Unfoldings and deformations of rational and logarithmic foliations %J Annales de l'Institut Fourier %D 2016 %P 1583-1613 %V 66 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3044/ %R 10.5802/aif.3044 %G en %F AIF_2016__66_4_1583_0
Molinuevo, Ariel. Unfoldings and deformations of rational and logarithmic foliations. Annales de l'Institut Fourier, Tome 66 (2016) no. 4, pp. 1583-1613. doi : 10.5802/aif.3044. https://aif.centre-mersenne.org/articles/10.5802/aif.3044/
[1] Irreducible components of the space of holomorphic foliations, Math. Ann., Volume 299 (1994) no. 4, pp. 751-767 | DOI
[2] El espacio de foliaciones holomorfas de codimensión uno, Monografías del Seminario Iberoamericano de Matemáticas [Monographs of the Seminario Iberoamericano de Matemáticas], 2, Instituto Interuniversitario de Estudios de Iberoamerica y Portugal, Tordesillas, 2003, 139 pages
[3] The topology of integrable differential forms near a singularity, Inst. Hautes Études Sci. Publ. Math. (1982) no. 55, pp. 5-35
[4] Irreducible components of the space of holomorphic foliations of degree two in , , Ann. of Math. (2), Volume 143 (1996) no. 3, pp. 577-612 | DOI
[5] On the stability of logarithmic differential one-forms (To appear)
[6] Stability of holomorphic foliations with split tangent sheaf, Amer. J. Math., Volume 130 (2008) no. 2, pp. 413-439 | DOI
[7] Stability of foliations induced by rational maps, Ann. Fac. Sci. Toulouse Math. (6), Volume 18 (2009) no. 4, pp. 685-715 http://afst.cedram.org/item?id=AFST_2009_6_18_4_685_0
[8] Singularities of logarithmic foliations, Compos. Math., Volume 142 (2006) no. 1, pp. 131-142 | DOI
[9] A computer algebra system for polynomial computations (http://www.singular.uni-kl.de.)
[10] Éléments d’analyse. Tome I, Cahiers Scientifiques [Scientific Reports], XXVIII, Gauthier-Villars, Paris, 1981, xxi+390 pages (Fondements de l’analyse moderne. [Foundations of modern analysis], Translated from the English by D. Huet, With a foreword by Gaston Julia)
[11] diffAlg, a differential algebra library (Available at https://savannah.nongnu.org/projects/diffalg/)
[12] Commutative algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995, xvi+785 pages (With a view toward algebraic geometry) | DOI
[13] Discriminants, resultants and multidimensional determinants, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008, x+523 pages (Reprint of the 1994 edition)
[14] Structural stability of singular holomorphic foliations having a meromorphic first integral, Topology, Volume 30 (1991) no. 3, pp. 315-334 | DOI
[15] Macaulay2, a software system for research in algebraic geometry (Available at http://www.math.uiuc.edu/Macaulay2/)
[16] Sur quelques points d’algèbre homologique, Tôhoku Math. J. (2), Volume 9 (1957), pp. 119-221
[17] Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. (1964) no. 20, 259 pages
[18] Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977, xvi+496 pages (Graduate Texts in Mathematics, No. 52)
[19] Deformation theory, Graduate Texts in Mathematics, 257, Springer, New York, 2010, viii+234 pages | DOI
[20] Duality and the de Rham cohomology of infinitesimal neighborhoods, Invent. Math., Volume 13 (1971), pp. 97-124
[21] Complex geometry, Universitext, Springer-Verlag, Berlin, 2005, xii+309 pages (An introduction)
[22] Équations de Pfaff algébriques, Lecture Notes in Mathematics, 708, Springer, Berlin, 1979, v+255 pages
[23] Componentes irredutíveis dos espaços de folheações, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2007, iv+204 pages (26 Colóquio Brasileiro de Matemática. [26th Brazilian Mathematics Colloquium])
[24] Frobenius avec singularités. I. Codimension un, Inst. Hautes Études Sci. Publ. Math. (1976) no. 46, pp. 163-173
[25] Frobenius avec singularités. II. Le cas général, Invent. Math., Volume 39 (1977) no. 1, pp. 67-89
[26] Modules de feuilletages holomorphes singuliers. I. Équisingularité, Invent. Math., Volume 103 (1991) no. 2, pp. 297-325 | DOI
[27] Topics in differential geometry, Graduate Studies in Mathematics, 93, American Mathematical Society, Providence, RI, 2008, xii+494 pages | DOI
[28] Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Mathematics, 91, Cambridge University Press, Cambridge, 2003, x+173 pages | DOI
[29] The red book of varieties and schemes, Lecture Notes in Mathematics, 1358, Springer-Verlag, Berlin, 1999, x+306 pages Includes the Michigan lectures (1974) on curves and their Jacobians, With contributions by Enrico Arbarello | DOI
[30] Algèbre locale. Multiplicités, Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel. Seconde édition, 1965. Lecture Notes in Mathematics, 11, Springer-Verlag, Berlin-New York, 1965, vii+188 pp. (not consecutively paged) pages
[31] Unfoldings of complex analytic foliations with singularities, Japan. J. Math. (N.S.), Volume 9 (1983) no. 1, pp. 181-206
[32] Unfoldings of foliations with multiform first integrals, Ann. Inst. Fourier (Grenoble), Volume 33 (1983) no. 3, pp. 99-112
[33] Unfoldings of meromorphic functions, Math. Ann., Volume 262 (1983) no. 2, pp. 215-224 | DOI
[34] Unfoldings of codimension one complex analytic foliation singularities, Singularity theory (Trieste, 1991), World Sci. Publ., River Edge, NJ, 1995, pp. 817-865
[35] Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, 94, Springer-Verlag, New York-Berlin, 1983, ix+272 pages (Corrected reprint of the 1971 edition)
Cité par Sources :