On démontre l’existence d’une unique surface maximale dans les variétés anti-de Sitter (AdS) globalement hyperboliques maximales (GHM) à particules (c’est à dire, avec des singularités coniques le long de courbes de type temps) lorsque les angles sont inférieurs à . On interprète ce résultat en termes de théorie de Teichmüller et nous démontrons l’existence d’un unique difféomorphisme minimal lagrangien isotope à l’identité entre deux surfaces hyperboliques à singularités coniques, lorsque les angles singuliers sont les mêmes pour les deux surfaces et sont inférieurs à .
We prove the existence of a unique maximal surface in each anti-de Sitter (AdS) Globally Hyperbolic Maximal (GHM) manifold with particles (that is, with conical singularities along time-like lines) for cone angles less than . We interpret this result in terms of Teichmüller theory, and prove the existence of a unique minimal Lagrangian diffeomorphism isotopic to the identity between two hyperbolic surfaces with cone singularities when the cone angles are the same for both surfaces and are less than .
Révisé le :
Accepté le :
Publié le :
Keywords: maximal surfaces, cone-manifolds, Lorentz geometry, minimal Lagrangian maps
Mot clés : surfaces maximales, variétés à singularités coniques, géometrie lorentzienne, applications minimales lagrangiennes
Toulisse, Jérémy 1
@article{AIF_2016__66_4_1409_0, author = {Toulisse, J\'er\'emy}, title = {Maximal surfaces in anti-de {Sitter} 3-manifolds with particles}, journal = {Annales de l'Institut Fourier}, pages = {1409--1449}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {4}, year = {2016}, doi = {10.5802/aif.3040}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3040/} }
TY - JOUR AU - Toulisse, Jérémy TI - Maximal surfaces in anti-de Sitter 3-manifolds with particles JO - Annales de l'Institut Fourier PY - 2016 SP - 1409 EP - 1449 VL - 66 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3040/ DO - 10.5802/aif.3040 LA - en ID - AIF_2016__66_4_1409_0 ER -
%0 Journal Article %A Toulisse, Jérémy %T Maximal surfaces in anti-de Sitter 3-manifolds with particles %J Annales de l'Institut Fourier %D 2016 %P 1409-1449 %V 66 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3040/ %R 10.5802/aif.3040 %G en %F AIF_2016__66_4_1409_0
Toulisse, Jérémy. Maximal surfaces in anti-de Sitter 3-manifolds with particles. Annales de l'Institut Fourier, Tome 66 (2016) no. 4, pp. 1409-1449. doi : 10.5802/aif.3040. https://aif.centre-mersenne.org/articles/10.5802/aif.3040/
[1] Minimal maps between the hyperbolic discs and generalized Gauss maps of maximal surfaces in the anti-de Sitter 3-space, Tohoku Math. J. (2), Volume 52 (2000) no. 3, pp. 415-429 | DOI
[2] Cosmological time versus CMC time in spacetimes of constant curvature, Asian J. Math., Volume 16 (2012) no. 1, pp. 37-87 | DOI
[3] Some open questions on Anti-de Sitter geometry (2012) (http://arxiv.org/abs/1205.6103)
[4] Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on , Geom. Dedicata, Volume 126 (2007), pp. 71-129 | DOI
[5] Simultaneous uniformization, Bull. Amer. Math. Soc., Volume 66 (1960), pp. 94-97
[6] AdS manifolds with particles and earthquakes on singular surfaces, Geom. Funct. Anal., Volume 19 (2009) no. 1, pp. 41-82 | DOI
[7] Global aspects of the Cauchy problem in general relativity, Comm. Math. Phys., Volume 14 (1969), pp. 329-335
[8] Harmonic mappings of Riemannian manifolds, Amer. J. Math., Volume 86 (1964), pp. 109-160
[9] Harmonic maps of conic surfaces with cone angles less than , Comm. Anal. Geom., Volume 23 (2015) no. 4, pp. 717-796 | DOI
[10] -surfaces in Lorentzian manifolds, Comm. Math. Phys., Volume 89 (1983) no. 4, pp. 523-553 http://projecteuclid.org/getRecord?id=euclid.cmp/1103922929
[11] Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, xiv+517 pages (Reprint of the 1998 edition)
[12] Topological components of spaces of representations, Invent. Math., Volume 93 (1988) no. 3, pp. 557-607 | DOI
[13] Über Flächen mit einer Relation zwischen den Hauptkrümmungen, Math. Nachr., Volume 4 (1951), pp. 232-249
[14] Kähler-Einstein metrics with edge singularities (2011) (http://arxiv.org/abs/1105.5216)
[15] Minimal surfaces and particles in 3-manifolds, Geom. Dedicata, Volume 126 (2007), pp. 187-254 | DOI
[16] Surfaces convexes dans l’espace hyperbolique et -structures, J. London Math. Soc. (2), Volume 45 (1992) no. 3, pp. 549-565 | DOI
[17] The convex core of quasifuchsian manifolds with particles, Geom. Topol., Volume 18 (2014) no. 4, pp. 2309-2373 | DOI
[18] Ricci flow on surfaces with conic singularities, Anal. PDE, Volume 8 (2015) no. 4, pp. 839-882 | DOI
[19] Point singularities and conformal metrics on Riemann surfaces, Proc. Amer. Math. Soc., Volume 103 (1988) no. 1, pp. 222-224 | DOI
[20] Lorentz spacetimes of constant curvature, Geom. Dedicata, Volume 126 (2007), pp. 3-45 | DOI
[21] Quasi-Fuchsian manifolds with particles, J. Differential Geom., Volume 83 (2009) no. 1, pp. 75-129 http://projecteuclid.org/getRecord?id=euclid.jdg/1253804352
[22] Métriques sur les polyèdres hyperboliques convexes, J. Differential Geom., Volume 48 (1998) no. 2, pp. 323-405 http://projecteuclid.org/getRecord?id=euclid.jdg/1214460799
[23] The role of harmonic mappings in rigidity and deformation problems, Complex geometry (Osaka, 1990) (Lecture Notes in Pure and Appl. Math.), Volume 143, Dekker, New York, 1993, pp. 179-200
[24] Minimal diffeomorphism between hyperbolic surfaces with cone singularities (2014) (http://arxiv.org/abs/1411.2656v1)
[25] Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc., Volume 324 (1991) no. 2, pp. 793-821 | DOI
Cité par Sources :