Pour tout groupe de Lie réel semisimple non compact , on construit un groupe discret de transformations affines de son algèbre de Lie dont la partie linéaire est Zariski-dense dans et qui est libre, non abélien et agit proprement sur .
For any noncompact semisimple real Lie group , we construct a group of affine transformations of its Lie algebra whose linear part is Zariski-dense in and which is free, nonabelian and acts properly discontinuously on .
Révisé le :
Accepté le :
Publié le :
Keywords: Discrete subgroups of Lie groups, Affine groups, Auslander conjecture, Milnor conjecture, Flat affine manifolds, Adjoint representation, Margulis invariant, Quasi-translation, Free group, Schottky group
Mot clés : Sous-groupes discrets de groups de Lie, groupes affines, conjecture d’Auslander, conjecture de Milnor, variétés affines plates, représentation adjointe, invariant de Margulis, quasi-translation, groupe libre, groupe de Schottky
Smilga, Ilia 1
@article{AIF_2016__66_2_785_0, author = {Smilga, Ilia}, title = {Proper affine actions on semisimple {Lie} algebras}, journal = {Annales de l'Institut Fourier}, pages = {785--831}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {2}, year = {2016}, doi = {10.5802/aif.3026}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3026/} }
TY - JOUR AU - Smilga, Ilia TI - Proper affine actions on semisimple Lie algebras JO - Annales de l'Institut Fourier PY - 2016 SP - 785 EP - 831 VL - 66 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3026/ DO - 10.5802/aif.3026 LA - en ID - AIF_2016__66_2_785_0 ER -
%0 Journal Article %A Smilga, Ilia %T Proper affine actions on semisimple Lie algebras %J Annales de l'Institut Fourier %D 2016 %P 785-831 %V 66 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3026/ %R 10.5802/aif.3026 %G en %F AIF_2016__66_2_785_0
Smilga, Ilia. Proper affine actions on semisimple Lie algebras. Annales de l'Institut Fourier, Tome 66 (2016) no. 2, pp. 785-831. doi : 10.5802/aif.3026. https://aif.centre-mersenne.org/articles/10.5802/aif.3026/
[1] On the Zariski closure of the linear part of a properly discontinuous group of affine transformations, J. Differential Geom., Volume 60 (2002) no. 2, pp. 315-344 http://projecteuclid.org/euclid.jdg/1090351104
[2] The linear part of an affine group acting properly discontinuously and leaving a quadratic form invariant, Geom. Dedicata, Volume 153 (2011), pp. 1-46 | DOI
[3] The Auslander conjecture for dimension less than 7 (2013) (http://arxiv.org/abs/1211.2525)
[4] Properly discontinuous groups of affine transformations: a survey, Geom. Dedicata, Volume 87 (2001) no. 1-3, pp. 309-333 | DOI
[5] The structure of complete locally affine manifolds, Topology, Volume 3 (1964) no. suppl. 1, pp. 131-139 | DOI
[6] Actions propres sur les espaces homogènes réductifs, Ann. of Math. (2), Volume 144 (1996) no. 2, pp. 315-347 | DOI
[7] Geometry and topology of complete Lorentz spacetimes of constant curvature (To appear in Annales Scientifiques de l’École Normale Supérieure.)
[8] Margulis spacetimes via the arc complex (2014) (http://arxiv.org/abs/1407.5422.)
[9] Fundamental polyhedra for Margulis space-times, Topology, Volume 31 (1992) no. 4, pp. 677-683 | DOI
[10] Linear holonomy of Margulis space-times, J. Differential Geom., Volume 38 (1993) no. 3, pp. 679-690 http://projecteuclid.org/euclid.jdg/1214454487
[11] Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996, vii+449 pages
[12] Three-dimensional affine crystallographic groups, Adv. in Math., Volume 47 (1983) no. 1, pp. 1-49 | DOI
[13] Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser Boston, Inc., Boston, MA, 1996, xvi+604 pages | DOI
[14] Free completely discontinuous groups of affine transformations, Dokl. Akad. Nauk SSSR, Volume 272 (1983) no. 4, pp. 785-788
[15] Complete affine locally flat manifolds with a free fundamental group, Journal of Soviet Mathematics, Volume 36 (1987) no. 1, pp. 129-139 | DOI
[16] On fundamental groups of complete affinely flat manifolds, Advances in Math., Volume 25 (1977) no. 2, pp. 178-187 | DOI
[17] Fundamental domains for properly discontinuous affine groups, Geom. Dedicata, Volume 171 (2014), pp. 203-229 | DOI
[18] Free subgroups in linear groups, J. Algebra, Volume 20 (1972), pp. 250-270 | DOI
Cité par Sources :