Nous étudions les singularités des métriques hermitiennes de Narasimhan-Simha sur les images directes des fibrés pluricanoniques relatifs. La majoration est liée aux seuils log-canoniques.
We study singularities of the Narasimhan-Simha Hermitian metric on the direct image of a relative pluricanonical bundle. The upper bound relates to log-canonical thresholds.
Révisé le :
Accepté le :
Publié le :
Keywords: singularities of Narasimhan-Simha metric, relative pluricanonical bundle, Bergman kernel metric, nef vector bundle
Mot clés : Singularités des métriques de Narasimhan-Simha, fibré pluricanonique relatif, métrique du noyau de Bergman, fibré vectoriel nef
Takayama, Shigeharu 1
@article{AIF_2016__66_2_753_0, author = {Takayama, Shigeharu}, title = {Singularities of {Narasimhan-Simha} type metrics on direct images of relative pluricanonical bundles}, journal = {Annales de l'Institut Fourier}, pages = {753--783}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {2}, year = {2016}, doi = {10.5802/aif.3025}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3025/} }
TY - JOUR AU - Takayama, Shigeharu TI - Singularities of Narasimhan-Simha type metrics on direct images of relative pluricanonical bundles JO - Annales de l'Institut Fourier PY - 2016 SP - 753 EP - 783 VL - 66 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3025/ DO - 10.5802/aif.3025 LA - en ID - AIF_2016__66_2_753_0 ER -
%0 Journal Article %A Takayama, Shigeharu %T Singularities of Narasimhan-Simha type metrics on direct images of relative pluricanonical bundles %J Annales de l'Institut Fourier %D 2016 %P 753-783 %V 66 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3025/ %R 10.5802/aif.3025 %G en %F AIF_2016__66_2_753_0
Takayama, Shigeharu. Singularities of Narasimhan-Simha type metrics on direct images of relative pluricanonical bundles. Annales de l'Institut Fourier, Tome 66 (2016) no. 2, pp. 753-783. doi : 10.5802/aif.3025. https://aif.centre-mersenne.org/articles/10.5802/aif.3025/
[1] Weak semistable reduction in characteristic 0, Invent. Math., Volume 139 (2000) no. 2, pp. 241-273 | DOI
[2] Bergman kernels and the pseudoeffectivity of relative canonical bundles, Duke Math. J., Volume 145 (2008) no. 2, pp. 341-378 | DOI
[3] Bergman kernels and subadjunction (2010) (http://arxiv.org/abs/1002.4145v1)
[4] Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI
[5] Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, Providence, RI, 2011, xxiv+841 pages | DOI
[6] Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992) no. 3, pp. 361-409
[7] Analytic methods in algebraic geometry, Surveys of Modern Mathematics, 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012, viii+231 pages
[8] Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math., Volume 12 (2001) no. 6, pp. 689-741 | DOI
[9] The Levi problem on complex spaces with singularities, Math. Ann., Volume 248 (1980) no. 1, pp. 47-72 | DOI
[10] Direct images of relative pluricanonical bundles (to appear in Algebr. Geom., http://arxiv.org/abs/1409.7437v3)
[11] On Kähler fiber spaces over curves, J. Math. Soc. Japan, Volume 30 (1978) no. 4, pp. 779-794 | DOI
[12] Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping, Inst. Hautes Études Sci. Publ. Math. (1970) no. 38, pp. 125-180 | DOI
[13] Existence of log canonical closures, Invent. Math., Volume 192 (2013) no. 1, pp. 161-195 | DOI
[14] Characterization of abelian varieties, Compositio Math., Volume 43 (1981) no. 2, pp. 253-276
[15] Kodaira dimension of algebraic fiber spaces over curves, Invent. Math., Volume 66 (1982) no. 1, pp. 57-71 | DOI
[16] Subadjunction of log canonical divisors for a subvariety of codimension , Birational algebraic geometry (Baltimore, MD, 1996) (Contemp. Math.), Volume 207, Amer. Math. Soc., Providence, RI, 1997, pp. 79-88 | DOI
[17] Subadjunction of log canonical divisors. II, Amer. J. Math., Volume 120 (1998) no. 5, pp. 893-899 http://muse.jhu.edu/journals/american_journal_of_mathematics/v120/120.5kawamata.pdf | DOI
[18] Geometry of bounded domains, Trans. Amer. Math. Soc., Volume 92 (1959), pp. 267-290 | DOI
[19] Subadditivity of the Kodaira dimension: fibers of general type, Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 361-398
[20] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998, viii+254 pages (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI
[21] Positivity in algebraic geometry. I, II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 48, 49, Springer-Verlag, Berlin, 2004 | DOI
[22] Extension of twisted Hodge metrics for Kähler morphisms, J. Differential Geom., Volume 83 (2009) no. 1, pp. 131-161 http://projecteuclid.org/euclid.jdg/1253804353
[23] Manifolds with ample canonical class, Invent. Math., Volume 5 (1968), pp. 120-128 | DOI
[24] Vector bundles on complex projective spaces, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2011, viii+239 pages (Corrected reprint of the 1988 edition, With an appendix by S. I. Gelfand)
[25] Siu’s invariance of plurigenera: a one-tower proof, J. Differential Geom., Volume 76 (2007) no. 3, pp. 485-493 http://projecteuclid.org/euclid.jdg/1180135695
[26] Positivity of twisted relative pluricanonical bundles and their direct images (http://arxiv.org/abs/1409.5504)
[27] On direct images of pluricanonical bundles (http://arxiv.org/abs/1405.6125v2)
[28] Singular hermitian metrics on holomorphic vector bundles (http://arxiv.org/abs/1211.2948v3)
[29] Kodaira dimensions of complements of divisors, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 239-257
[30] Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Complex geometry (Göttingen, 2000), Springer, Berlin, 2002, pp. 223-277
[31] On the invariance and the lower semi-continuity of plurigenera of algebraic varieties, J. Algebraic Geom., Volume 16 (2007) no. 1, pp. 1-18 | DOI
[32] Curvature semipositivity of relative pluricanonical systems (http://arxiv.org/abs/math/0703729v2)
[33] Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 30, Springer-Verlag, Berlin, 1995, viii+320 pages | DOI
[34] Singularities and analytic torsion (http://arxiv.org/abs/1007.2835v1)
Cité par Sources :