Nous donnons une classification de tous les champs de vecteurs algébriques complets sur les surfaces de Danielewski (surface lisse donnée par ). Nous utilisons le fait que pour chaque tel champ vectoriel, il existe une fibration préservée par son flot. Une classification des fonctions régulières avec fibre générique or est requise pour obtenir la liste explicite des champs vectoriels. Nous présentons des résultats sur de telles fibrations définies sur des surfaces de Gizatullin et donnons une description précise de ces fibrés pour les surfaces de Danielewski.
We give the classification of all complete algebraic vector fields on Danielewski surfaces (smooth surfaces given by ). We use the fact that for each such vector field there exists a certain fibration that is preserved under its flow. In order to get the explicit list of vector fields a classification of regular function with general fiber or is required. In this text we present results about such fibrations on Gizatullin surfaces and we give a precise description of these fibrations for Danielewski surfaces.
Révisé le :
Accepté le :
Publié le :
Keywords: affine surfaces, complete vector fields, algebraic fibrations
Mot clés : Surfaces affines, champs de vecteurs complets, fibrés algébriques
Leuenberger, Matthias 1
@article{AIF_2016__66_2_433_0, author = {Leuenberger, Matthias}, title = {Complete algebraic vector fields on {Danielewski} surfaces}, journal = {Annales de l'Institut Fourier}, pages = {433--454}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {2}, year = {2016}, doi = {10.5802/aif.3015}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3015/} }
TY - JOUR AU - Leuenberger, Matthias TI - Complete algebraic vector fields on Danielewski surfaces JO - Annales de l'Institut Fourier PY - 2016 SP - 433 EP - 454 VL - 66 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3015/ DO - 10.5802/aif.3015 LA - en ID - AIF_2016__66_2_433_0 ER -
%0 Journal Article %A Leuenberger, Matthias %T Complete algebraic vector fields on Danielewski surfaces %J Annales de l'Institut Fourier %D 2016 %P 433-454 %V 66 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3015/ %R 10.5802/aif.3015 %G en %F AIF_2016__66_2_433_0
Leuenberger, Matthias. Complete algebraic vector fields on Danielewski surfaces. Annales de l'Institut Fourier, Tome 66 (2016) no. 2, pp. 433-454. doi : 10.5802/aif.3015. https://aif.centre-mersenne.org/articles/10.5802/aif.3015/
[1] Complete vector fields on , Proc. Amer. Math. Soc., Volume 128 (2000) no. 4, pp. 1079-1085 | DOI
[2] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 4, Springer-Verlag, Berlin, 2004, xii+436 pages | DOI
[3] Automorphisms of -fibered affine surfaces, Trans. Amer. Math. Soc., Volume 363 (2011) no. 11, pp. 5887-5924 | DOI
[4] Foliations on complex projective surfaces, Dynamical systems. Part II (Pubbl. Cent. Ric. Mat. Ennio Giorgi), Scuola Norm. Sup., Pisa, 2003, pp. 49-77
[5] Birational geometry of foliations, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2004, iv+138 pages
[6] Complete polynomial vector fields on the complex plane, Topology, Volume 43 (2004) no. 2, pp. 433-445 | DOI
[7] On locally nilpotent derivations of , J. Pure Appl. Algebra, Volume 181 (2003) no. 2-3, pp. 181-208 | DOI
[8] Birational transformations of weighted graphs, Affine algebraic geometry, Osaka Univ. Press, Osaka, 2007, pp. 107-147
[9] Uniqueness of - and -actions on Gizatullin surfaces, Transform. Groups, Volume 13 (2008) no. 2, pp. 305-354 | DOI
[10] An inequality for certain pencils of plane curves, Proc. Amer. Math. Soc., Volume 12 (1961), pp. 631-638 | DOI
[11] Complete algebraic vector fields on affine surfaces (2014) (http://arxiv.org/abs/1411.5484)
[12] The algebraic density property for affine toric varieties, J. Pure Appl. Algebra, Volume 219 (2015) no. 8, pp. 3685-3700 | DOI
[13] Locally nilpotent derivations on the surface , Proceedings of the Third International Algebra Conference (Tainan, 2002) (2003), pp. 215-219
[14] Non-commutative Mori theory (preprint IHES M/01/42, 2001)
[15] Sur les opérations holomorphes du groupe additif complexe sur l’espace de deux variables complexes, Ann. Sci. École Norm. Sup. (4), Volume 10 (1977) no. 4, pp. 517-546
Cité par Sources :