Nous associons à tout espace riemannien symétrique (de dimension finie ou non) une -algèbre dès lors que l’opérateur de courbure est de signe fixe. Les -algèbres sont des algèbres de Lie avec une structure d’espace de Hilbert compatible. La -algèbre que nous construisons est un invariant d’isomorphisme local et nous permet de classifier les espaces symétriques riemanniens simplement connexe avec un opérateur de courbure de signe fixe. Le cas de la courbure négative est mis en avant.
We associate to any Riemannian symmetric space (of finite or infinite dimension) a L-algebra, under the assumption that the curvature operator has a fixed sign. L-algebras are Lie algebras with a pleasant Hilbert space structure. The L-algebra that we construct is a complete local isomorphism invariant and allows us to classify simply-connected Riemannian symmetric spaces with fixed-sign curvature operator. The case of nonpositive curvature is emphasized.
Keywords: Riemannian symmetric spaces, $L^*$-algebras, infinite dimension
Mot clés : Espaces riemanniens symétriques, $L^*$-algèbres, dimension infinie
Duchesne, Bruno 1
@article{AIF_2015__65_1_211_0, author = {Duchesne, Bruno}, title = {Infinite dimensional {Riemannian} symmetric spaces with fixed-sign curvature operator}, journal = {Annales de l'Institut Fourier}, pages = {211--244}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {1}, year = {2015}, doi = {10.5802/aif.2929}, zbl = {06496538}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2929/} }
TY - JOUR AU - Duchesne, Bruno TI - Infinite dimensional Riemannian symmetric spaces with fixed-sign curvature operator JO - Annales de l'Institut Fourier PY - 2015 SP - 211 EP - 244 VL - 65 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2929/ DO - 10.5802/aif.2929 LA - en ID - AIF_2015__65_1_211_0 ER -
%0 Journal Article %A Duchesne, Bruno %T Infinite dimensional Riemannian symmetric spaces with fixed-sign curvature operator %J Annales de l'Institut Fourier %D 2015 %P 211-244 %V 65 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2929/ %R 10.5802/aif.2929 %G en %F AIF_2015__65_1_211_0
Duchesne, Bruno. Infinite dimensional Riemannian symmetric spaces with fixed-sign curvature operator. Annales de l'Institut Fourier, Tome 65 (2015) no. 1, pp. 211-244. doi : 10.5802/aif.2929. https://aif.centre-mersenne.org/articles/10.5802/aif.2929/
[1] The Hopf-Rinow theorem is false in infinite dimensions, Bull. London Math. Soc., Volume 7 (1975) no. 3, pp. 261-266 | DOI | MR | Zbl
[2] Real -algebras, Indian J. Pure Appl. Math., Volume 3 (1972) no. 6, pp. 1224-1246 | MR | Zbl
[3] The geometry of Jordan and Lie structures, Lecture Notes in Mathematics, 1754, Springer-Verlag, Berlin, 2000, pp. xvi+269 | DOI | MR | Zbl
[4] Essays in the history of Lie groups and algebraic groups, History of Mathematics, 21, American Mathematical Society, Providence, RI, 2001, pp. xiv+184 http://links.jstor.org/sici?sici=0002-9890(200111)108:9<879:TEOTTO>2.0.CO;2-7 | MR | Zbl
[5] Topological vector spaces. Chapters 1–5, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1987, pp. viii+364 (Translated from the French by H. G. Eggleston and S. Madan) | MR | Zbl
[6] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, 1999, pp. xxii+643 | MR | Zbl
[7] At infinity of finite-dimensional CAT(0) spaces, Math. Ann., Volume 346 (2010) no. 1, pp. 1-21 | DOI | MR | Zbl
[8] Isometry groups of non-positively curved spaces: structure theory, J. Topol., Volume 2 (2009) no. 4, pp. 661-700 | DOI | MR | Zbl
[9] Jordan triples and Riemannian symmetric spaces, Adv. Math., Volume 219 (2008) no. 6, pp. 2029-2057 | DOI | MR | Zbl
[10] Des espaces de Hadamard symétriques de dimension infinie et de rang fini, Université de Genève, Juillet (2011) (Ph. D. Thesis)
[11] Infinite-dimensional nonpositively curved symmetric spaces of finite rank, Int. Math. Res. Not. IMRN (2013) no. 7, pp. 1578-1627 | MR | Zbl
[12] A setting for global analysis, Bull. Amer. Math. Soc., Volume 72 (1966), pp. 751-807 | DOI | MR
[13] Harmonic mappings of Riemannian manifolds, Amer. J. Math., Volume 86 (1964), pp. 109-160 | DOI | MR | Zbl
[14] Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne, J. Math. Pures Appl. (9), Volume 54 (1975) no. 3, pp. 259-284 | MR | Zbl
[15] Classification des -algèbres semi-simples réelles séparables, C. R. Acad. Sci. Paris Sér. A-B, Volume 272 (1971), p. A1559-A1561 | MR | Zbl
[16] Classical Banach-Lie algebras and Banach-Lie groups of operators in Hilbert space, Lecture Notes in Mathematics, Vol. 285, Springer-Verlag, Berlin, 1972, pp. iii+160 | MR | Zbl
[17] Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, RI, 2001, pp. xxvi+641 (Corrected reprint of the 1978 original) | MR | Zbl
[18] Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension. I, Math. Ann., Volume 257 (1981) no. 4, pp. 463-486 | DOI | EuDML | MR | Zbl
[19] Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension. II, Math. Ann., Volume 262 (1983) no. 1, pp. 57-75 | DOI | EuDML | MR | Zbl
[20] Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. (1997) no. 86, p. 115-197 (1998) | DOI | EuDML | Numdam | MR | Zbl
[21] Riemannian geometry, de Gruyter Studies in Mathematics, 1, Walter de Gruyter & Co., Berlin, 1995, pp. x+409 | MR | Zbl
[22] Banach Symmetric Spaces (2009) (http://arxiv.org/abs/0911.2089) | MR
[23] Fundamentals of differential geometry, Graduate Texts in Mathematics, 191, Springer-Verlag, New York, 1999, pp. xviii+535 | MR | Zbl
[24] Nonpositive curvature: a geometrical approach to Hilbert-Schmidt operators, Differential Geom. Appl., Volume 25 (2007) no. 6, pp. 679-700 | DOI | MR | Zbl
[25] Infinite dimensional manifolds and morse theory, ProQuest LLC, Ann Arbor, MI, 1965, pp. 119 http://search.proquest.com/docview/302168992 Thesis (Ph.D.)–Columbia University | MR
[26] Superrigidity for irreducible lattices and geometric splitting, J. Amer. Math. Soc., Volume 19 (2006) no. 4, pp. 781-814 | DOI | MR | Zbl
[27] A Cartan-Hadamard theorem for Banach-Finsler manifolds, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part II (Haifa, 2000), Volume 95 (2002), pp. 115-156 | DOI | MR | Zbl
[28] Riemannian geometry, Graduate Texts in Mathematics, 171, Springer, New York, 2006, pp. xvi+401 | MR | Zbl
[29] Sur la reductibilité d’un espace de Riemann, Comment. Math. Helv., Volume 26 (1952), pp. 328-344 | DOI | EuDML | MR | Zbl
[30] Hilbert space methods in the theory of Lie algebras, Trans. Amer. Math. Soc., Volume 95 (1960), pp. 69-80 | DOI | MR | Zbl
[31] Cartan decompositions for algebras, Trans. Amer. Math. Soc., Volume 98 (1961), pp. 334-349 | MR | Zbl
[32] Infinite-dimensional spaces with bounded curvature, Sibirsk. Mat. Zh., Volume 36 (1995) no. 5, p. 1167-1178, iv | DOI | MR | Zbl
[33] On the transitivity of holonomy systems, Ann. of Math. (2), Volume 76 (1962), pp. 213-234 | DOI | MR | Zbl
[34] On the classification of infinite-dimensional irreducible Hermitian-symmetric affine coadjoint orbits, Forum Math., Volume 21 (2009) no. 3, pp. 375-393 | DOI | MR | Zbl
[35] Classification of the simple separable real -algebras, J. Differential Geometry, Volume 7 (1972), pp. 423-451 | MR | Zbl
[36] Symmetric Banach manifolds and Jordan -algebras, North-Holland Mathematics Studies, 104, North-Holland Publishing Co., Amsterdam, 1985, pp. xii+444 (Notas de Matemática [Mathematical Notes], 96) | MR | Zbl
Cité par Sources :