Nous montrons que chaque petite résolution d’une singularité de hypersurface 3-dimensionnelle terminale peut se produire sur une variété 1-convexe non plongeable.
Nous donnons un exemple explicite d’une variété non plongeable contenant une courbe exceptionnelle rationnelle irréductible avec fibré normal du type . À cette fin, nous étudions de petites résolutions des singularités .
We show that every small resolution of a 3-dimensional terminal hypersurface singularity can occur on a non-embeddable -convex manifold.
We give an explicit example of a non-embeddable manifold containing an irreducible exceptional rational curve with normal bundle of type . To this end we study small resolutions of -singularities.
Keywords: 1-convex manifolds, small resolutions
Mot clés : variétés 1-convexes, petites résolutions
Stevens, Jan 1
@article{AIF_2014__64_5_2205_0, author = {Stevens, Jan}, title = {Non-embeddable $1$-convex manifolds}, journal = {Annales de l'Institut Fourier}, pages = {2205--2222}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {5}, year = {2014}, doi = {10.5802/aif.2909}, mrnumber = {3330936}, zbl = {06387336}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2909/} }
TY - JOUR AU - Stevens, Jan TI - Non-embeddable $1$-convex manifolds JO - Annales de l'Institut Fourier PY - 2014 SP - 2205 EP - 2222 VL - 64 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2909/ DO - 10.5802/aif.2909 LA - en ID - AIF_2014__64_5_2205_0 ER -
%0 Journal Article %A Stevens, Jan %T Non-embeddable $1$-convex manifolds %J Annales de l'Institut Fourier %D 2014 %P 2205-2222 %V 64 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2909/ %R 10.5802/aif.2909 %G en %F AIF_2014__64_5_2205_0
Stevens, Jan. Non-embeddable $1$-convex manifolds. Annales de l'Institut Fourier, Tome 64 (2014) no. 5, pp. 2205-2222. doi : 10.5802/aif.2909. https://aif.centre-mersenne.org/articles/10.5802/aif.2909/
[1] On the embedding of 1-convex manifolds with 1-dimensional exceptional set, Ann. Inst. Fourier (Grenoble), Volume 51 (2001) no. 1, pp. 99-108 | DOI | Numdam | MR | Zbl
[2] Transforms of currents by modifications and 1-convex manifolds, Osaka J. Math., Volume 40 (2003) no. 3, pp. 717-740 | MR | Zbl
[3] Singularities of differentiable maps. Vol. I, Monographs in Mathematics, 82, Birkhäuser Boston, Inc., Boston, MA, 1985, pp. xi+382 (The classification of critical points, caustics and wave fronts, Translated from the Russian by Ian Porteous and Mark Reynolds) | MR | Zbl
[4] Some examples of 1-convex non-embeddable threefolds, Rev. Roumaine Math. Pures Appl., Volume 52 (2007) no. 6, pp. 611-617 | MR | Zbl
[5] Higher-dimensional complex geometry Astérisque 166, (1988), 144 pp. | MR | Zbl
[6] On -convex manifolds with -dimensional exceptional set, Rev. Roumaine Math. Pures Appl., Volume 43 (1998) no. 1-2, pp. 97-104 (Collection of papers in memory of Martin Jurchescu) | MR | Zbl
[7] Some remarks about 1-convex manifolds on which all holomorphic line bundles are trivial, Bull. Sci. Math., Volume 130 (2006) no. 4, pp. 337-340 | DOI | MR | Zbl
[8] Gorenstein threefold singularities with small resolutions via invariant theory for Weyl groups, J. Algebraic Geom., Volume 1 (1992) no. 3, pp. 449-530 | MR | Zbl
[9] General hyperplane sections of nonsingular flops in dimension , Math. Res. Lett., Volume 1 (1994) no. 1, pp. 49-52 | DOI | MR | Zbl
[10] Flips, flops, minimal models, etc, Surveys in differential geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991, pp. 113-199 | MR | Zbl
[11] On as an exceptional set, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) (Ann. of Math. Stud.), Volume 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 261-275 | MR | Zbl
[12] Irreducible exceptional submanifolds, of the first kind, of three-dimensional complex-analytic manifolds, Soviet Math. Dokl., Volume 6 (1965), pp. 402-403 | MR | Zbl
[13] Factorization of birational maps in dimension , Singularities, Part 2 (Arcata, Calif., 1981) (Proc. Sympos. Pure Math.), Volume 40, Amer. Math. Soc., Providence, RI, 1983, pp. 343-371 | MR | Zbl
[14] The Grothendieck-Lefschetz theorem for normal projective varieties, J. Algebraic Geom., Volume 15 (2006) no. 3, pp. 563-590 | DOI | MR | Zbl
[15] The Noether-Lefschetz theorem for the divisor class group, J. Algebra, Volume 322 (2009) no. 9, pp. 3373-3391 | DOI | MR | Zbl
[16] Minimal models of canonical -folds, Algebraic varieties and analytic varieties (Tokyo, 1981) (Adv. Stud. Pure Math.), Volume 1, North-Holland, Amsterdam, 1983, pp. 131-180 | MR | Zbl
[17] Familien negativer Vektorraumbündel und -konvexe Abbildungen, Abh. Math. Sem. Univ. Hamburg, Volume 47 (1978), pp. 150-170 (Special issue dedicated to the seventieth birthday of Erich Kähler) | DOI | MR | Zbl
[18] On certain non-Kählerian strongly pseudoconvex manifolds, J. Geom. Anal., Volume 4 (1994) no. 2, pp. 233-245 | DOI | MR | Zbl
[19] On the Kählerian geometry of -convex threefolds, Forum Math., Volume 7 (1995) no. 2, pp. 131-146 | MR | Zbl
[20] Resolution of singularities of flat deformations of double rational points, Funkcional. Anal. i Priložen., Volume 4 (1970) no. 1, pp. 77-83 | MR | Zbl
[21] On embeddable 1-convex spaces, Osaka J. Math., Volume 38 (2001) no. 2, pp. 287-294 | MR | Zbl
[22] On the quasi-projectivity of compactifiable strongly pseudoconvex manifolds, Bull. Sci. Math., Volume 129 (2005) no. 6, pp. 501-522 | DOI | MR | Zbl
Cité par Sources :