On établit l’isomorphisme de dualité étrange pour toutes les surfaces constituant un diviseur de Noether-Lefschetz dans l’espace de modules de surfaces quasipolarisées. On interprète le résultat d’une manière globale, comme un isomorphisme de faisceaux à travers ce diviseur, et on décrit aussi la construction globale sur l’espace de modules des surfaces polarisées.
We extend results on generic strange duality for surfaces by showing that the proposed isomorphism holds over an entire Noether-Lefschetz divisor in the moduli space of quasipolarized s. We interpret the statement globally as an isomorphism of sheaves over this divisor, and also describe the global construction over the space of polarized .
Keywords: $K$3 surface, moduli space of sheaves, strange duality
Mot clés : surface $K$3, espace de modules des faisceaux, dualité étrange
Marian, Alina 1 ; Oprea, Dragos 2
@article{AIF_2014__64_5_2067_0, author = {Marian, Alina and Oprea, Dragos}, title = {On {Verlinde} sheaves and strange duality over elliptic {Noether-Lefschetz} divisors}, journal = {Annales de l'Institut Fourier}, pages = {2067--2086}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {5}, year = {2014}, doi = {10.5802/aif.2904}, mrnumber = {3330931}, zbl = {06387331}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2904/} }
TY - JOUR AU - Marian, Alina AU - Oprea, Dragos TI - On Verlinde sheaves and strange duality over elliptic Noether-Lefschetz divisors JO - Annales de l'Institut Fourier PY - 2014 SP - 2067 EP - 2086 VL - 64 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2904/ DO - 10.5802/aif.2904 LA - en ID - AIF_2014__64_5_2067_0 ER -
%0 Journal Article %A Marian, Alina %A Oprea, Dragos %T On Verlinde sheaves and strange duality over elliptic Noether-Lefschetz divisors %J Annales de l'Institut Fourier %D 2014 %P 2067-2086 %V 64 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2904/ %R 10.5802/aif.2904 %G en %F AIF_2014__64_5_2067_0
Marian, Alina; Oprea, Dragos. On Verlinde sheaves and strange duality over elliptic Noether-Lefschetz divisors. Annales de l'Institut Fourier, Tome 64 (2014) no. 5, pp. 2067-2086. doi : 10.5802/aif.2904. https://aif.centre-mersenne.org/articles/10.5802/aif.2904/
[1] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 4, Springer-Verlag, Berlin, 1984, pp. x+304 | DOI | MR | Zbl
[2] The Euclid-Fourier-Mukai algorithm for elliptic surfaces (arXiv:1002.4986, to appear in Asian J. Math.)
[3] Fourier-Mukai transforms for elliptic surfaces, J. Reine Angew. Math., Volume 498 (1998), pp. 115-133 | DOI | MR | Zbl
[4] Derived categories of twisted sheaves on Calabi-Yau manifolds, ProQuest LLC, Ann Arbor, MI, 2000, pp. 196 Thesis (Ph.D.)–Cornell University | MR
[5] On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom., Volume 10 (2001) no. 1, pp. 81-100 | MR | Zbl
[6] Algebraic surfaces and holomorphic vector bundles, Universitext, Springer-Verlag, New York, 1998, pp. x+328 | DOI | MR | Zbl
[7] Note on tautological classes of moduli of surfaces, Mosc. Math. J., Volume 5 (2005) no. 4, p. 775-779, 972 | MR | Zbl
[8] Relative integral functors for singular fibrations and singular partners, J. Eur. Math. Soc., Volume 11 (2009), pp. 597-625 | DOI | MR | Zbl
[9] Birational symplectic manifolds and their deformations, J. Differential Geom., Volume 45 (1997) no. 3, pp. 488-513 http://projecteuclid.org/euclid.jdg/1214459840 | MR | Zbl
[10] Fibré déterminant et courbes de saut sur les surfaces algébriques, Complex projective geometry (Trieste, 1989/Bergen, 1989) (London Math. Soc. Lecture Note Ser.), Volume 179, Cambridge Univ. Press, Cambridge, 1992, pp. 213-240 | DOI | MR | Zbl
[11] Dualité étrange sur le plan projectif, 1996 (Luminy)
[12] Algebraic geometric interpretation of Donaldson’s polynomial invariants, J. Differential Geom., Volume 37 (1993) no. 2, pp. 417-466 http://projecteuclid.org/euclid.jdg/1214453683 | MR | Zbl
[13] A tour of theta dualities on moduli spaces of sheaves, Curves and abelian varieties (Contemp. Math.), Volume 465, Amer. Math. Soc., Providence, RI, 2008, pp. 175-201 | DOI | MR | Zbl
[14] Generic strange duality for surfaces, Duke Math. J., Volume 162 (2013) no. 8, pp. 1463-1501 (With an appendix by Kota Yoshioka) | DOI | MR | Zbl
[15] A Torelli theorem for algebraic surfaces of type , Math. USSR Izvestia, Volume 5 (1971), pp. 547-588 | DOI | Zbl
[16] Abelian fibred holomorphic symplectic manifolds, Turkish J. Math., Volume 27 (2003) no. 1, pp. 197-230 | MR | Zbl
[17] Dualité étrange de Le Potier et cohomologie du schéma de Hilbert ponctuel d’une surface, Gaz. Math. (2007) no. 112, pp. 53-65 | MR | Zbl
[18] Cohomology of the Hilbert scheme of points on a surface with values in representations of tautological bundles, Duke Math. J., Volume 150 (2009) no. 2, pp. 211-267 | DOI | MR | Zbl
Cité par Sources :