Nous montrons qu’il existe un groupe de type fini de croissance pour n’importe quelle fonction satisfaisant lorsque est suffisamment grand, avec la racine positive de . Soit ; alors toutes les fonctions qui croissent uniformément plus vite que sont réalisables comme fonction de croissance d’un groupe.
Nous exhibons aussi une famille de groupes branchés contractants-pour-la-somme et de croissance , pour un sous-ensemble dense d’.
We show that there exists a finitely generated group of growth for all functions satisfying for all large enough and the positive root of . Set ; then all functions that grow uniformly faster than are realizable as the growth of a group.
We also give a family of sum-contracting branched groups of growth for a dense set of .
Keywords: Growth of groups, self-similar groups, groups acting on trees, wreath products
Mot clés : Croissance des groupes, groupes auto-similaires, groupes agissant sur des arbres, produits en couronne
Bartholdi, Laurent 1 ; Erschler, Anna 2
@article{AIF_2014__64_5_2003_0, author = {Bartholdi, Laurent and Erschler, Anna}, title = {Groups of given intermediate word growth}, journal = {Annales de l'Institut Fourier}, pages = {2003--2036}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {5}, year = {2014}, doi = {10.5802/aif.2902}, mrnumber = {3330929}, zbl = {06387329}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2902/} }
TY - JOUR AU - Bartholdi, Laurent AU - Erschler, Anna TI - Groups of given intermediate word growth JO - Annales de l'Institut Fourier PY - 2014 SP - 2003 EP - 2036 VL - 64 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2902/ DO - 10.5802/aif.2902 LA - en ID - AIF_2014__64_5_2003_0 ER -
%0 Journal Article %A Bartholdi, Laurent %A Erschler, Anna %T Groups of given intermediate word growth %J Annales de l'Institut Fourier %D 2014 %P 2003-2036 %V 64 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2902/ %R 10.5802/aif.2902 %G en %F AIF_2014__64_5_2003_0
Bartholdi, Laurent; Erschler, Anna. Groups of given intermediate word growth. Annales de l'Institut Fourier, Tome 64 (2014) no. 5, pp. 2003-2036. doi : 10.5802/aif.2902. https://aif.centre-mersenne.org/articles/10.5802/aif.2902/
[1] The growth of Grigorchuk’s torsion group, Internat. Math. Res. Notices (1998) no. 20, pp. 1049-1054 | DOI | MR | Zbl
[2] Lower bounds on the growth of a group acting on the binary rooted tree, Internat. J. Algebra Comput., Volume 11 (2001) no. 1, pp. 73-88 | DOI | MR | Zbl
[3] Endomorphic presentations of branch groups, J. Algebra, Volume 268 (2003) no. 2, pp. 419-443 | DOI | MR | Zbl
[4] Growth of permutational extensions, Invent. Math., Volume 189 (2012) no. 2, pp. 431-455 | DOI | MR | Zbl
[5] Poisson-Furstenberg boundary and growth of groups (arXiv:math/1107.5499)
[6] Branch groups, Handbook of algebra, Vol. 3, North-Holland, Amsterdam, 2003, pp. 989-1112 | MR | Zbl
[7] Images of Golod-Shafarevich algebras with small growth (to appear in Quartely J. Math, arXiv:math/1108.4267, DOI: 10.1093/qmath/hat005) | MR
[8] On the word and period growth of some groups of tree automorphisms, Comm. Algebra, Volume 29 (2001) no. 11, pp. 4923-4964 | DOI | MR | Zbl
[9] Extensions of Jentzsch’s theorem, Trans. Amer. Math. Soc., Volume 85 (1957), pp. 219-227 | MR | Zbl
[10] Growth behaviours in the range (arXiv:math/1107.1632)
[11] Growth of certain groups of automorphisms of rooted trees, Université de Paris 7 (2008) (Doctoral Dissertation)
[12] Problems and Solutions: Advanced Problems: 5600-5609, Amer. Math. Monthly, Volume 75 (1968) no. 6, pp. 685-687 | DOI | MR
[13] Finitely presented wreath products and double coset decompositions, Geom. Dedicata, Volume 122 (2006), pp. 89-108 | DOI | MR | Zbl
[14] Boundary behavior for groups of subexponential growth, Ann. of Math. (2), Volume 160 (2004) no. 3, pp. 1183-1210 | DOI | MR | Zbl
[15] Critical constants for recurrence of random walks on -spaces, Ann. Inst. Fourier (Grenoble), Volume 55 (2005) no. 2, pp. 493-509 | DOI | Numdam | MR | Zbl
[16] On the degrees of growth of finitely generated groups, Funktsional. Anal. i Prilozhen., Volume 39 (2005) no. 4, pp. 86-89 | MR | Zbl
[17] On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR, Volume 271 (1983) no. 1, pp. 30-33 | MR | Zbl
[18] Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat., Volume 48 (1984) no. 5, pp. 939-985 | MR | Zbl
[19] Degrees of growth of -groups and torsion-free groups, Mat. Sb. (N.S.), Volume 126(168) (1985) no. 2, p. 194-214, 286 | MR | Zbl
[20] An example of an indexed language of intermediate growth, Theoret. Comput. Sci., Volume 215 (1999) no. 1-2, pp. 325-327 | DOI | MR | Zbl
[21] Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. (1981) no. 53, pp. 53-73 | DOI | Numdam | MR | Zbl
[22] Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000, pp. vi+310 | MR | Zbl
[23] Groups of oscillating intermediate growth, Ann. of Math. (2), Volume 177 (2013) no. 3, pp. 1113-1145 | DOI | MR | Zbl
[24] Growth of algebras and Gelfand-Kirillov dimension, Graduate Studies in Mathematics, 22, American Mathematical Society, Providence, RI, 2000, pp. x+212 | MR | Zbl
[25] On a lower bound for the growth function of the Grigorchuk group, Mat. Zametki, Volume 67 (2000) no. 3, pp. 475-477 | MR | Zbl
[26] How groups grow, London Mathematical Society Lecture Note Series, 395, Cambridge University Press, Cambridge, 2012, pp. 1-200 | MR | Zbl
[27] On growth of Grigorchuk groups, Internat. J. Algebra Comput. (2001) no. 1, pp. 1-17 | DOI | MR | Zbl
[28] On a -generated infinite -group: the presentation problem, J. Algebra, Volume 110 (1987) no. 1, pp. 13-23 | DOI | MR | Zbl
[29] The growth functions of finitely generated semigroups, Semigroup Forum, Volume 21 (1980) no. 4, pp. 351-360 | DOI | MR | Zbl
[30] The Gel’fand-Kirillov dimension of a tensor product, Math. Z., Volume 185 (1984) no. 4, pp. 441-447 | DOI | MR | Zbl
Cité par Sources :