On démontre une condition suffisante pour le problème Jacobien dans le contexte des applications polynomiales réelles, complexes ou mixtes. Ceci résulte de l’étude de l’ensemble de bifurcation d’une application soumise à une nouvelle condition de non-dégénérescence par rapport aux polyèdres de Newton à l’infini.
We prove a sufficient condition for the Jacobian problem in the setting of real, complex and mixed polynomial mappings. This follows from the study of the bifurcation locus of a mapping subject to a new Newton non-degeneracy condition.
Keywords: real and complex polynomial mappings, bifurcation locus, Jacobian problem, Newton polyhedron, regularity at infinity
Mot clés : applications polynomiales réelles ou complexes, ensemble de bifurcation, problème Jacobien, polyèdre de Newton, regularité à l’infini
Chen, Ying 1 ; Dias, Luis Renato G. 1 ; Takeuchi, Kiyoshi 2 ; Tibăr, Mihai 3
@article{AIF_2014__64_5_1807_0, author = {Chen, Ying and Dias, Luis Renato G. and Takeuchi, Kiyoshi and Tib\u{a}r, Mihai}, title = {Invertible polynomial mappings via {Newton} non-degeneracy}, journal = {Annales de l'Institut Fourier}, pages = {1807--1822}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {5}, year = {2014}, doi = {10.5802/aif.2897}, mrnumber = {3330924}, zbl = {06387324}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2897/} }
TY - JOUR AU - Chen, Ying AU - Dias, Luis Renato G. AU - Takeuchi, Kiyoshi AU - Tibăr, Mihai TI - Invertible polynomial mappings via Newton non-degeneracy JO - Annales de l'Institut Fourier PY - 2014 SP - 1807 EP - 1822 VL - 64 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2897/ DO - 10.5802/aif.2897 LA - en ID - AIF_2014__64_5_1807_0 ER -
%0 Journal Article %A Chen, Ying %A Dias, Luis Renato G. %A Takeuchi, Kiyoshi %A Tibăr, Mihai %T Invertible polynomial mappings via Newton non-degeneracy %J Annales de l'Institut Fourier %D 2014 %P 1807-1822 %V 64 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2897/ %R 10.5802/aif.2897 %G en %F AIF_2014__64_5_1807_0
Chen, Ying; Dias, Luis Renato G.; Takeuchi, Kiyoshi; Tibăr, Mihai. Invertible polynomial mappings via Newton non-degeneracy. Annales de l'Institut Fourier, Tome 64 (2014) no. 5, pp. 1807-1822. doi : 10.5802/aif.2897. https://aif.centre-mersenne.org/articles/10.5802/aif.2897/
[1] Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc., Volume 13 (1962), pp. 200-203 | DOI | MR | Zbl
[2] Injectivity of real polynomial maps and Łojasiewicz exponents at infinity, Math. Z., Volume 257 (2007) no. 4, pp. 745-767 | DOI | MR | Zbl
[3] On the topology of polynomial hypersurfaces, Singularities, Part 1 (Arcata, Calif., 1981) (Proc. Sympos. Pure Math.), Volume 40, Amer. Math. Soc., Providence, RI, 1983, pp. 167-178 | MR | Zbl
[4] Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math., Volume 92 (1988) no. 2, pp. 217-241 | DOI | MR | Zbl
[5] On Newton non-degeneracy of polynomial mappings (arXiv:1207.1612)
[6] Bifurcation values and monodromy of mixed polynomials, Math. Res. Lett., Volume 19 (2012) no. 1, pp. 59-79 | DOI | MR | Zbl
[7] Injective endomorphisms of algebraic and analytic sets, Ann. Polon. Math., Volume 56 (1991) no. 1, pp. 29-35 | MR | Zbl
[8] Regularity at infinity of real mappings and a Morse-Sard theorem, J. Topol., Volume 5 (2012) no. 2, pp. 323-340 | DOI | MR | Zbl
[9] Five definitions of critical point at infinity, Singularities (Oberwolfach, 1996) (Progr. Math.), Volume 162, Birkhäuser, Basel, 1998, pp. 345-360 | MR | Zbl
[10] Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, 190, Birkhäuser Verlag, Basel, 2000, pp. xviii+329 | DOI | Zbl
[11] Motivic Milnor fibers over complete intersection varieties and their virtual Betti numbers, Int. Math. Res. Not. IMRN (2012) no. 15, pp. 3567-3613 | DOI | MR | Zbl
[12] Fibers of polynomial mappings at infinity and a generalized Malgrange condition, Compositio Math., Volume 119 (1999) no. 2, pp. 157-167 | DOI | MR | Zbl
[13] Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. (1964) no. 20, pp. 259 | EuDML | Numdam | MR | Zbl
[14] Sur la topologie des polynômes complexes, Acta Math. Vietnam, Volume 9 (1984) no. 1, pp. 21-32 | Zbl
[15] Testing sets for properness of polynomial mappings, Math. Ann., Volume 315 (1999) no. 1, pp. 1-35 | DOI | MR | Zbl
[16] On asymptotic critical values and the Rabier theorem, Geometric singularity theory (Banach Center Publ.), Volume 65, Polish Acad. Sci., Warsaw, 2004, pp. 125-133 | DOI | MR | Zbl
[17] Semialgebraic Sard theorem for generalized critical values, J. Differential Geom., Volume 56 (2000) no. 1, pp. 67-92 http://projecteuclid.org/getRecord?id=euclid.jdg/1090347525 | MR | Zbl
[18] Polyèdres de Newton et nombres de Milnor, Invent. Math., Volume 32 (1976), pp. 1-31 | DOI | EuDML | Zbl
[19] Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves, Math. Z., Volume 268 (2011) no. 1-2, pp. 409-439 | DOI | MR | Zbl
[20] On the bifurcation set of a polynomial function and Newton boundary, Publ. Res. Inst. Math. Sci., Volume 26 (1990) no. 4, pp. 681-689 | DOI | MR | Zbl
[21] Milnor fibration at infinity, Indag. Math. (N.S.), Volume 3 (1992) no. 3, pp. 323-335 | DOI | MR | Zbl
[22] Bifurcation set, -tameness, asymptotic critical values and Newton polyhedrons, Kodai Math. J., Volume 36 (2013) no. 1, pp. 77-90 | DOI | MR | Zbl
[23] Non-degenerate complete intersection singularity, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1997, pp. viii+309 | MR | Zbl
[24] Topology of polar weighted homogeneous hypersurfaces, Kodai Math. J., Volume 31 (2008) no. 2, pp. 163-182 | DOI | MR | Zbl
[25] Non-degenerate mixed functions, Kodai Math. J., Volume 33 (2010) no. 1, pp. 1-62 | DOI | MR | Zbl
[26] On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math., Volume 97 (1995) no. 3, pp. 369-384 | EuDML | Numdam | MR | Zbl
[27] A counterexample to the strong real Jacobian conjecture, Math. Z., Volume 217 (1994) no. 1, pp. 1-4 | DOI | EuDML | MR | Zbl
[28] Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. of Math. (2), Volume 146 (1997) no. 3, pp. 647-691 | DOI | MR | Zbl
[29] Singularities at infinity and their vanishing cycles, Duke Math. J., Volume 80 (1995) no. 3, pp. 771-783 | DOI | MR | Zbl
[30] Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace , J. Math. Soc. Japan, Volume 26 (1974), pp. 241-257 | DOI | MR | Zbl
[31] Regularity at infinity of real and complex polynomial functions, Singularity theory (Liverpool, 1996) (London Math. Soc. Lecture Note Ser.), Volume 263, Cambridge Univ. Press, Cambridge, 1999, pp. xx, 249-264 | MR | Zbl
[32] Polynomials and vanishing cycles, Cambridge Tracts in Mathematics, 170, Cambridge University Press, Cambridge, 2007, pp. xii+253 | DOI | MR | Zbl
[33] Asymptotic behaviour of families of real curves, Manuscripta Math., Volume 99 (1999) no. 3, pp. 383-393 | DOI | MR | Zbl
[34] Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math., Volume 36 (1976), pp. 295-312 | DOI | EuDML | MR | Zbl
Cité par Sources :