Soit un groupe contenant un sous-groupe infini élémentairement moyennable et soit . Nous construisons des sous--modules fermés de d’union croissante dense mais qui rencontrent trivialement un sous-module fermé non trivial. Ce phénomène est un obstacle à la quête d’une dimension et répond à une question de Gaboriau.
Let be any group containing an infinite elementary amenable subgroup and let . We construct an exhaustion of by closed invariant subspaces which all intersect trivially a fixed non-trivial closed invariant subspace. This is an obstacle to -dimension and gives an answer to a question of Gaboriau.
Keywords: $\ell ^p$-dimension, abstract harmonic analysis
Mot clés : dimension $\ell ^p$, analyse harmonique abstraite
Monod, Nicolas 1 ; Petersen, Henrik Densing 2
@article{AIF_2014__64_4_1363_0, author = {Monod, Nicolas and Petersen, Henrik Densing}, title = {An obstruction to $\ell ^{p}$-dimension}, journal = {Annales de l'Institut Fourier}, pages = {1363--1371}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {4}, year = {2014}, doi = {10.5802/aif.2883}, zbl = {1309.43001}, mrnumber = {3329666}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2883/} }
TY - JOUR AU - Monod, Nicolas AU - Petersen, Henrik Densing TI - An obstruction to $\ell ^{p}$-dimension JO - Annales de l'Institut Fourier PY - 2014 SP - 1363 EP - 1371 VL - 64 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2883/ DO - 10.5802/aif.2883 LA - en ID - AIF_2014__64_4_1363_0 ER -
%0 Journal Article %A Monod, Nicolas %A Petersen, Henrik Densing %T An obstruction to $\ell ^{p}$-dimension %J Annales de l'Institut Fourier %D 2014 %P 1363-1371 %V 64 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2883/ %R 10.5802/aif.2883 %G en %F AIF_2014__64_4_1363_0
Monod, Nicolas; Petersen, Henrik Densing. An obstruction to $\ell ^{p}$-dimension. Annales de l'Institut Fourier, Tome 64 (2014) no. 4, pp. 1363-1371. doi : 10.5802/aif.2883. https://aif.centre-mersenne.org/articles/10.5802/aif.2883/
[1] -cohomology and group cohomology, Topology, Volume 25 (1986) no. 2, pp. 189-215 | DOI | MR | Zbl
[2] Elementary amenable groups, Illinois J. Math., Volume 24 (1980) no. 3, pp. 396-407 http://projecteuclid.org/euclid.ijm/1256047608 | MR | Zbl
[3] Solvability of groups of odd order, Pacific J. Math., Volume 13 (1963), pp. 775-1029 | DOI | MR | Zbl
[4] Invariants de relations d’équivalence et de groupes, Publ. Math. Inst. Hautes Études Sci. (2002) no. 95, pp. 93-150 | DOI | EuDML | Numdam | MR | Zbl
[5] A dynamical approach to von Neumann dimension, Discrete Contin. Dyn. Syst., Volume 26 (2010) no. 3, pp. 967-987 | DOI | MR | Zbl
[6] Further properties of dimension, J. Funct. Anal., Volume 266 (2014) no. 2, pp. 487-513 | DOI | MR | Zbl
[7] A property of locally finite groups, J. London Math. Soc., Volume 39 (1964), pp. 235-239 | DOI | MR | Zbl
[8] An -version of von Neumann dimension for Banach space representations of sofic groups II (Preprint, arXiv:1302.2286v2) | Zbl
[9] An -version of von Neumann dimension for Banach space representations of sofic groups, J. Funct. Anal., Volume 266 (2014) no. 2, pp. 989-1040 | DOI | MR | Zbl
[10] Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Bd. 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963, pp. viii+519 | MR | Zbl
[11] On rings of operators, Ann. of Math. (2), Volume 37 (1936) no. 1, pp. 116-229 | DOI | MR | Zbl
[12] -cohomology of symmetric spaces, Geometry, analysis and topology of discrete groups (Adv. Lect. Math. (ALM)), Volume 6, Int. Press, Somerville, MA, 2008, pp. 305-326 | MR | Zbl
[13] Zero divisors and , Proc. Amer. Math. Soc., Volume 126 (1998) no. 3, pp. 721-728 | DOI | MR | Zbl
[14] On convolution squares of singular measures, Illinois J. Math., Volume 24 (1980) no. 2, pp. 225-232 http://projecteuclid.org/euclid.ijm/1256047718 | MR | Zbl
[15] -Betti numbers of discrete measured groupoids, Internat. J. Algebra Comput., Volume 15 (2005) no. 5-6, pp. 1169-1188 | DOI | MR | Zbl
[16] Free subgroups in linear groups, J. Algebra, Volume 20 (1972), pp. 250-270 | DOI | MR | Zbl
Cité par Sources :