Chen–Ruan Cohomology of 1,n and ¯ 1,n
[Cohomologie de Chen–Ruan de 1,n et ¯ 1,n ]
Annales de l'Institut Fourier, Tome 63 (2013) no. 4, pp. 1469-1509.

Dans ce travail on calcule la cohomologie de Chen–Ruan de l’espace de modules des courbes lisses et stables de genre 1 avec n points marqués. Dans la première partie on étudie et on décrit les secteurs tordus de 1,n et ¯ 1,n , en tant que champs.

Dans la deuxième partie, on étudie la théorie d’intersection orbifold de ¯ 1,n . On donne une définition possible de l’anneau tautologique orbifold en genre 1, comme sous-anneau simultanément de la cohomologie de Chen–Ruan et de l’anneau de Chow orbifold.

In this work we compute the Chen–Ruan cohomology of the moduli spaces of smooth and stable n-pointed curves of genus 1. In the first part of the paper we study and describe stack theoretically the twisted sectors of 1,n and ¯ 1,n . In the second part, we study the orbifold intersection theory of ¯ 1,n . We suggest a definition for an orbifold tautological ring in genus 1, which is a subring of both the Chen–Ruan cohomology and of the stringy Chow ring.

DOI : 10.5802/aif.2808
Classification : 14H10, 14N35, 55N32, 14D23, 14H37, 55P50
Keywords: moduli spaces, Gromov-Witten, orbifold, cohomology, tautological ring
Mot clés : espaces de modules, Gromov-Witten, orbifold, cohomologie, anneau tautologique

Pagani, Nicola 1

1 Institut fur Algebraische Geometrie, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
@article{AIF_2013__63_4_1469_0,
     author = {Pagani, Nicola},
     title = {Chen{\textendash}Ruan {Cohomology} of $\mathcal{M}_{1,n}$ and $\overline{\mathcal{M}}_{1,n}$},
     journal = {Annales de l'Institut Fourier},
     pages = {1469--1509},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {63},
     number = {4},
     year = {2013},
     doi = {10.5802/aif.2808},
     mrnumber = {3137360},
     zbl = {06359594},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2808/}
}
TY  - JOUR
AU  - Pagani, Nicola
TI  - Chen–Ruan Cohomology of $\mathcal{M}_{1,n}$ and $\overline{\mathcal{M}}_{1,n}$
JO  - Annales de l'Institut Fourier
PY  - 2013
SP  - 1469
EP  - 1509
VL  - 63
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2808/
DO  - 10.5802/aif.2808
LA  - en
ID  - AIF_2013__63_4_1469_0
ER  - 
%0 Journal Article
%A Pagani, Nicola
%T Chen–Ruan Cohomology of $\mathcal{M}_{1,n}$ and $\overline{\mathcal{M}}_{1,n}$
%J Annales de l'Institut Fourier
%D 2013
%P 1469-1509
%V 63
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2808/
%R 10.5802/aif.2808
%G en
%F AIF_2013__63_4_1469_0
Pagani, Nicola. Chen–Ruan Cohomology of $\mathcal{M}_{1,n}$ and $\overline{\mathcal{M}}_{1,n}$. Annales de l'Institut Fourier, Tome 63 (2013) no. 4, pp. 1469-1509. doi : 10.5802/aif.2808. https://aif.centre-mersenne.org/articles/10.5802/aif.2808/

[1] Abramovich, Dan; Graber, Tom; Vistoli, Angelo Algebraic orbifold quantum products, Orbifolds in mathematics and physics (Madison, WI, 2001) (Contemp. Math.), Volume 310, Amer. Math. Soc., Providence, RI, 2002, pp. 1-24 | MR | Zbl

[2] Abramovich, Dan; Graber, Tom; Vistoli, Angelo Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math., Volume 130 (2008) no. 5, pp. 1337-1398 | DOI | MR | Zbl

[3] Adem, Alejandro; Leida, Johann; Ruan, Yongbin Orbifolds and stringy topology, Cambridge Tracts in Mathematics, 171, Cambridge University Press, Cambridge, 2007 | MR | Zbl

[4] Belorousski, Pavel Chow Rings of moduli spaces of pointed elliptic curves, Chicago (1998) (Ph. D. Thesis) | MR

[5] Breen, Lawrence On the classification of 2 -gerbes and 2 -stacks, Astérisque, 1994 no. 225 (160 pp) | MR | Zbl

[6] Chen, Weimin; Ruan, Yongbin A new cohomology theory of orbifold, Comm. Math. Phys., Volume 248 (2004) no. 1, pp. 1-31 | DOI | MR | Zbl

[7] Diamond, Fred; Shurman, Jerry A first course in modular forms, Graduate Texts in Mathematics, 228, Springer-Verlag, New York, 2005 | MR | Zbl

[8] Faber, Carel; Pandharipande, Rahul Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS), Volume 7 (2005) no. 1, pp. 13-49 | DOI | EuDML | MR | Zbl

[9] Fantechi, Barbara; Göttsche, Lothar Orbifold cohomology for global quotients, Duke Math. J., Volume 117 (2003) no. 2, pp. 197-227 | DOI | MR | Zbl

[10] Fulton, William Intersection Theory, Springer-Verlag, Berlin, 1984 | MR | Zbl

[11] Getzler, Ezra Operads and moduli of genus 0 Riemann surfaces, The moduli space of curves (Texel Island, 1994) (Progr. Math.), Volume 129, Birkhäuser Boston, Boston, MA, 1995, pp. 199-230 | MR

[12] Getzler, Ezra Intersection theory on M ¯ 1,4 and elliptic Gromov-Witten invariants, J. Amer. Math. Soc., Volume 10 (1997) no. 4, pp. 973-998 | DOI | MR | Zbl

[13] Getzler, Ezra The semi-classical approximation for modular operads, Comm. Math. Phys., Volume 194 (1998) no. 2, pp. 481-492 | DOI | MR | Zbl

[14] Giraud, Jean Cohomologie non abélienne (French), Die Grundlehren der mathematischen Wissenschaften, Band, 179, Springer-Verlag, Berlin-New York, 1971 | MR | Zbl

[15] Graber, Tom; Pandharipande, Rahul Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J., Volume 51 (2003) no. 1, pp. 93-109 | DOI | MR | Zbl

[16] Graber, Tom; Vakil, Ravi Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J., Volume 130 (2005) no. 1, pp. 1-37 | DOI | MR | Zbl

[17] Keel, Sean Intersection theory of moduli space of stable n-pointed curves of genus zero, Trans. Amer. Math. Soc., Volume 330 (1992) no. 2, pp. 545-574 | MR | Zbl

[18] Mann, Étienne Orbifold quantum cohomology of weighted projective spaces, J. Algebraic Geom., Volume 17 (2008) no. 1, pp. 137-166 | DOI | MR | Zbl

[19] Mumford, David Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry Vol II (Progr. Math.), Volume 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271-328 | MR | Zbl

[20] Pagani, Nicola Chen–Ruan cohomology of moduli of curves, SISSA (Trieste) (2009) (Ph. D. Thesis)

[21] Pagani, Nicola The Chen-Ruan cohomology of moduli of curves of genus 2 with marked points, Adv. Math., Volume 229 (2012) no. 3, pp. 1643-1687 | DOI | MR | Zbl

[22] Pagani, Nicola The orbifold cohomology of moduli of hyperelliptic curves, Int. Math. Res. Not. IMRN (2012) no. 10, pp. 2163-2178 | MR | Zbl

[23] Pagani, Nicola; Tommasi, Orsola The orbifold cohomology of moduli of genus 3 curves (http://arxiv.org/abs/1103.0151)

[24] Petersen, Dan The structure of the tautological ring in genus 1 (http://arxiv.org/abs/1205.1586v1)

[25] Silverman, Joseph H. The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer-Verlag, New York, 1992 | MR | Zbl

[26] Spencer, James E. The stringy Chow ring of the moduli stack of genus-two curves and its Deligne-Mumford compactification, Boston (2004) (Ph. D. Thesis) | MR

[27] Spencer, James E. The orbifold cohomology of the moduli of genus-two curves, Gromov-Witten theory of spin curves and orbifolds (Contemp. Math.), Volume 403, Amer. Math. Soc., Providence, RI, 2006, pp. 167-184 | MR | Zbl

[28] Vistoli, Angelo Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math., Volume 97 (1989) no. 3, pp. 613-670 | DOI | MR | Zbl

Cité par Sources :