Soient des fibrés en droites holomorphes sur des variétés complexes compactes, pour . Soit le fibré en cercles associé par rapport à un produit scalaire hermitienne sur . On construit des structures complexes sur dites de type scalaire, diagonal, ou linéaire. Bien que des structures de type scalaire existent toujours, on construit des structures plus générales de type diagonal mais non-scalaire dans le cas où les sont des fibrés équivariants qui vérifient certaines hypothèses supplémentaires. Les structures complexes de type linéaire sont des variétés des drapeaux (généralisées) et les sont des fibrés en droites amples négatifs. Lorsque et est non-nulle la variété compacte n’admet pas de structure symplectique et donc elle est non-Kählerienne par rapport à toute structure complexe.
On montre que s’annule quand les sont des variétés projectives, les son très amples et le cône sur par rapport au plongement projectif défini par sont Cohen-Macaulay. On applique ces résultats au groupe de Picard de . Quand où sont les sousgroupes paraboliques maximaux et la variété est munie d’une structure complexe du type linéaire avec « la partie unipotente nulle » on montre que le corps des fonctions méromorphes sur est purement transcendental sur .
Let be a holomorphic line bundle over a compact complex manifold for . Let denote the associated principal circle-bundle with respect to some hermitian inner product on . We construct complex structures on which we refer to as scalar, diagonal, and linear types. While scalar type structures always exist, the more general diagonal but non-scalar type structures are constructed assuming that are equivariant -bundles satisfying some additional conditions. The linear type complex structures are constructed assuming are (generalized) flag varieties and negative ample line bundles over . When and is non-zero, the compact manifold does not admit any symplectic structure and hence it is non-Kähler with respect to any complex structure.
We obtain a vanishing theorem for when are projective manifolds, are very ample and the cone over with respect to the projective imbedding defined by are Cohen-Macaulay. We obtain applications to the Picard group of . When where are maximal parabolic subgroups and is endowed with linear type complex structure with “vanishing unipotent part” we show that the field of meromorphic functions on is purely transcendental over .
Keywords: circle bundles, complex manifolds, homogeneous spaces, Picard groups, meromorphic function fields
Mot clés : fibré en cercles, variétés complexes, espaces homogénes, groupes de Picard, corpses des fonctions meromorphes
Sankaran, Parameswaran 1 ; Thakur, Ajay Singh 2
@article{AIF_2013__63_4_1331_0, author = {Sankaran, Parameswaran and Thakur, Ajay Singh}, title = {Complex structures on product of circle bundles over complex manifolds}, journal = {Annales de l'Institut Fourier}, pages = {1331--1366}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {4}, year = {2013}, doi = {10.5802/aif.2805}, mrnumber = {3137357}, zbl = {06359591}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2805/} }
TY - JOUR AU - Sankaran, Parameswaran AU - Thakur, Ajay Singh TI - Complex structures on product of circle bundles over complex manifolds JO - Annales de l'Institut Fourier PY - 2013 SP - 1331 EP - 1366 VL - 63 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2805/ DO - 10.5802/aif.2805 LA - en ID - AIF_2013__63_4_1331_0 ER -
%0 Journal Article %A Sankaran, Parameswaran %A Thakur, Ajay Singh %T Complex structures on product of circle bundles over complex manifolds %J Annales de l'Institut Fourier %D 2013 %P 1331-1366 %V 63 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2805/ %R 10.5802/aif.2805 %G en %F AIF_2013__63_4_1331_0
Sankaran, Parameswaran; Thakur, Ajay Singh. Complex structures on product of circle bundles over complex manifolds. Annales de l'Institut Fourier, Tome 63 (2013) no. 4, pp. 1331-1366. doi : 10.5802/aif.2805. https://aif.centre-mersenne.org/articles/10.5802/aif.2805/
[1] Ordinary differential equations, Second printing of the 1992 edition. Universitext, Springer-Verlag, Berlin, 2006 | MR | Zbl
[2] Algebraic methods in the global theory of of complex spaces, John Wiley, London, 1976 | MR | Zbl
[3] Some remarks on deformations of Hopf manifolds, Rev. Roum. Math., Volume 26 (1981), pp. 1287-1294 | MR | Zbl
[4] Variétés complexes compactes: une généralisation de la construction de Meersseman et López de Medrano-Verjovsky, Ann. Inst. Fourier (Grenoble), Volume 51 (2001) no. 5, pp. 1259-1297 | DOI | Numdam | MR | Zbl
[5] A class of compact, complex manifolds which are not algebraic, Ann. of Math. (2), Volume 58 (1953), pp. 494-500 | DOI | MR | Zbl
[6] Formule di Künneth per la coomologia a valori in an fascio, Annali della Scuola Normale Superiore di Pisa, Volume 27 (1973), pp. 905-931 | Numdam | MR | Zbl
[7]
Séminaire H. Cartan, exp. 3 (1960/61)[8] Deformations of transversely holomorphic flows on spheres and deformations of Hopf manifolds, Compositio Math., Volume 55 (1985), pp. 241-251 | Numdam | MR | Zbl
[9] Zur Topologie der komplexen Mannigfaltigkeiten, Courant Anniversary Volume, New York, 1948 | MR | Zbl
[10] Linear algebraic groups, Graduate Texts in Math, Springer-Verlag, New York, 1975 | MR | Zbl
[11] On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math., Volume 71 (1960), pp. 43-76 | DOI | MR | Zbl
[12] A new family of complex, compact, non-symplectic manifolds, Bol. Soc. Brasil. Mat. (N.S.), Volume 28 (1997) no. 2, pp. 253-269 | DOI | MR | Zbl
[13] Singular locus of a Schubert variety, Bull. Amer. Math. Soc., Volume 11 (1984), pp. 363-366 | DOI | MR | Zbl
[14] Holomorphic flows and complex structures on products of odd-dimensional spheres, Math. Ann., Volume 306 (1996) no. 4, pp. 781-817 | DOI | MR | Zbl
[15] A new geometric construction of compact complex manifolds in any dimension, Math. Ann., Volume 317 (2000) no. 1, pp. 79-115 | DOI | MR | Zbl
[16] Holomorphic principal bundles over projective toric varieties, J. Reine Angew. Math., Volume 572 (2004), pp. 57-96 | MR | Zbl
[17] Modifications, Several complex variables, VII (Encyclopaedia Math. Sci.), Volume 74, Springer, Berlin, 1994, pp. 285-317 | MR | Zbl
[18] Nuclear locally convex spaces, Translated from the second German edition by William H. Ruckle. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band, 66, Springer-Verlag, New York – Heidelberg, 1972 | MR | Zbl
[19] Projective normality of flag varieties and Schubert varieties, Invent. Math., Volume 79 (1985) no. 2, pp. 217-224 | DOI | MR | Zbl
[20] Schubert varieties are arithmetically Cohen-Macaulay, Invent. Math., Volume 80 (1985) no. 2, pp. 283-294 | DOI | MR | Zbl
[21] Dolbeault cohomology of compact complex homogeneous manifolds, Proc. Indian Acad. Sci. Math. Sci., Volume 109 (1999) no. 1, pp. 11-21 | MR | Zbl
[22] A coincidence theorem for holomorphic maps to , Canad. Math. Bull., Volume 46 (2003) no. 2, pp. 291-298 | DOI | MR | Zbl
[23] Closed manifolds with homogeneous complex structure, Amer. J. Math., Volume 76 (1954), pp. 1-32 | DOI | MR | Zbl
Cité par Sources :