The modular class of a Poisson map
[La classe modulaire d’une application de Poisson]
Annales de l'Institut Fourier, Tome 63 (2013) no. 4, pp. 1285-1329.

Nous introduisons la classe modulaire d’une application de Poisson. Nous regardons quelques exemples et nous utilisons les classes modulaires des applications de Poisson pour étudier le comportement de la classe modulaire d’une variété de Poisson sous différents types de réduction. Nous discutons également leur version pour les groupoïdes symplectiques, qui prend ses valeurs dans la cohomologie du groupoïde.

We introduce the modular class of a Poisson map. We look at several examples and we use the modular classes of Poisson maps to study the behavior of the modular class of a Poisson manifold under different kinds of reduction. We also discuss their symplectic groupoid version, which lives in groupoid cohomology.

DOI : 10.5802/aif.2804
Classification : 53D17, 58H05, 22A22
Keywords: Poisson manifold, Poisson map, modular class
Mot clés : Variété de Poisson, application de Poisson, classe modulaire

Caseiro, Raquel 1 ; Fernandes, Rui Loja 2

1 Universidade de Coimbra CMUC, Department of Mathematics 3001-454 Coimbra, (Portugal)
2 University of Illinois at Urbana-Champaign Department of Mathematics 1409 W. Green Street Urbana, IL 61801 (USA)
@article{AIF_2013__63_4_1285_0,
     author = {Caseiro, Raquel and Fernandes, Rui Loja},
     title = {The modular class of a {Poisson} map},
     journal = {Annales de l'Institut Fourier},
     pages = {1285--1329},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {63},
     number = {4},
     year = {2013},
     doi = {10.5802/aif.2804},
     mrnumber = {3137356},
     zbl = {06359590},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2804/}
}
TY  - JOUR
AU  - Caseiro, Raquel
AU  - Fernandes, Rui Loja
TI  - The modular class of a Poisson map
JO  - Annales de l'Institut Fourier
PY  - 2013
SP  - 1285
EP  - 1329
VL  - 63
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2804/
DO  - 10.5802/aif.2804
LA  - en
ID  - AIF_2013__63_4_1285_0
ER  - 
%0 Journal Article
%A Caseiro, Raquel
%A Fernandes, Rui Loja
%T The modular class of a Poisson map
%J Annales de l'Institut Fourier
%D 2013
%P 1285-1329
%V 63
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2804/
%R 10.5802/aif.2804
%G en
%F AIF_2013__63_4_1285_0
Caseiro, Raquel; Fernandes, Rui Loja. The modular class of a Poisson map. Annales de l'Institut Fourier, Tome 63 (2013) no. 4, pp. 1285-1329. doi : 10.5802/aif.2804. https://aif.centre-mersenne.org/articles/10.5802/aif.2804/

[1] Bursztyn, H. A brief introduction to Dirac manifolds (Preprint arXiv:1112.5037)

[2] Cattaneo, Alberto S.; Felder, Giovanni Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model, Lett. Math. Phys., Volume 69 (2004), pp. 157-175 | DOI | MR | Zbl

[3] Crainic, Marius Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Comment. Math. Helv., Volume 78 (2003) no. 4, pp. 681-721 | DOI | MR | Zbl

[4] Crainic, Marius; Fernandes, Rui Loja Integrability of Poisson brackets, J. Differential Geom., Volume 66 (2004) no. 1, pp. 71-137 http://projecteuclid.org/getRecord?id=euclid.jdg/1090415030 | MR | Zbl

[5] Crainic, Marius; Fernandes, Rui Loja Stability of symplectic leaves, Invent. Math., Volume 180 (2010) no. 3, pp. 481-533 | DOI | MR | Zbl

[6] Crainic, Marius; Fernandes, Rui Loja Lectures on integrability of Lie brackets, Lectures on Poisson geometry (Geom. Topol. Monogr.), Volume 17, Geom. Topol. Publ., Coventry, 2011, pp. 1-107 | MR | Zbl

[7] Evens, Sam; Lu, Jiang-Hua; Weinstein, Alan Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford Ser. (2), Volume 50 (1999) no. 200, pp. 417-436 | DOI | MR | Zbl

[8] Fernandes, Rui Loja Connections in Poisson geometry. I. Holonomy and invariants, J. Differential Geom., Volume 54 (2000) no. 2, pp. 303-365 http://projecteuclid.org/getRecord?id=euclid.jdg/1214341648 | MR | Zbl

[9] Fernandes, Rui Loja Lie algebroids, holonomy and characteristic classes, Adv. Math., Volume 170 (2002) no. 1, pp. 119-179 | DOI | MR | Zbl

[10] Fernandes, Rui Loja The symplectization functor, XV International Workshop on Geometry and Physics (Publ. R. Soc. Mat. Esp.), Volume 11, R. Soc. Mat. Esp., Madrid, 2007, pp. 67-82 | MR | Zbl

[11] Fernandes, Rui Loja; Iglesias Ponte, David Integrability of Poisson-Lie group actions, Lett. Math. Phys., Volume 90 (2009) no. 1-3, pp. 137-159 | DOI | MR | Zbl

[12] Fernandes, Rui Loja; Ortega, Juan-Pablo; Ratiu, Tudor S. The momentum map in Poisson geometry, Amer. J. Math., Volume 131 (2009) no. 5, pp. 1261-1310 | DOI | MR | Zbl

[13] Ginzburg, Viktor L. Equivariant Poisson cohomology and a spectral sequence associated with a moment map, Internat. J. Math., Volume 10 (1999) no. 8, pp. 977-1010 | DOI | MR | Zbl

[14] Ginzburg, Viktor L.; Golubev, Alex Holonomy on Poisson manifolds and the modular class, Israel J. Math., Volume 122 (2001), pp. 221-242 | DOI | MR | Zbl

[15] Ginzburg, Viktor L.; Lu, Jiang-Hua Poisson cohomology of Morita-equivalent Poisson manifolds, Internat. Math. Res. Notices (1992) no. 10, pp. 199-205 | DOI | MR | Zbl

[16] Grabowski, Janusz; Marmo, Giuseppe; Michor, Peter W. Homology and modular classes of Lie algebroids, Ann. Inst. Fourier (Grenoble), Volume 56 (2006) no. 1, pp. 69-83 | DOI | Numdam | MR | Zbl

[17] Kosmann-Schwarzbach, Yvette; Laurent-Gengoux, C.; Weinstein, Alan Modular classes of Lie algebroid morphisms, Transform. Groups, Volume 13 (2008) no. 3-4, pp. 727-755 | DOI | MR | Zbl

[18] Kosmann-Schwarzbach, Yvette; Weinstein, Alan Relative modular classes of Lie algebroids, C. R. Math. Acad. Sci. Paris, Volume 341 (2005) no. 8, pp. 509-514 | DOI | MR | Zbl

[19] Koszul, Jean-Louis Crochet de Schouten-Nijenhuis et cohomologie, Astérisque (1985) no. Numéro Hors Série, pp. 257-271 The mathematical heritage of Élie Cartan (Lyon, 1984) | MR | Zbl

[20] Lichnerowicz, André Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry, Volume 12 (1977) no. 2, pp. 253-300 | MR | Zbl

[21] Lu, Jiang-Hua Multiplicative and affine Poisson structures on Lie groups, ProQuest LLC, Ann Arbor, MI, 1990 Thesis (Ph.D.)–University of California, Berkeley | MR

[22] Lu, Jiang-Hua Momentum mappings and reduction of Poisson actions, Symplectic geometry, groupoids, and integrable systems (Berkeley, CA, 1989) (Math. Sci. Res. Inst. Publ.), Volume 20, Springer, New York, 1991, pp. 209-226 | DOI | MR | Zbl

[23] Moerdijk, I.; Mrčun, J. On the integrability of Lie subalgebroids, Adv. Math., Volume 204 (2006) no. 1, pp. 101-115 | DOI | MR | Zbl

[24] Radko, Olga A classification of topologically stable Poisson structures on a compact oriented surface, J. Symplectic Geom., Volume 1 (2002) no. 3, pp. 523-542 http://projecteuclid.org/getRecord?id=euclid.jsg/1092403031 | DOI | MR | Zbl

[25] Weinstein, Alan Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan, Volume 40 (1988) no. 4, pp. 705-727 | DOI | MR | Zbl

[26] Weinstein, Alan The modular automorphism group of a Poisson manifold, J. Geom. Phys., Volume 23 (1997) no. 3-4, pp. 379-394 | DOI | MR | Zbl

[27] Xu, Ping Dirac submanifolds and Poisson involutions, Ann. Sci. École Norm. Sup. (4), Volume 36 (2003) no. 3, pp. 403-430 | DOI | Numdam | MR | Zbl

Cité par Sources :