Singular distributions, dimension of support, and symmetry of Fourier transform
[Distributions singulières, dimension du support et symétrie de la transformation de Fourier.]
Annales de l'Institut Fourier, Tome 63 (2013) no. 4, pp. 1205-1226.

On étudie la “symétrie de Fourier” des mesures et des distributions sur le cercle en rapport avec la dimension de leurs supports. Les résultats essentiels du présent travail sont les suivants  :

(i) L’extension unilatérale du théorème de Frostman qui met en rapport la vitesse de décroissance de la transformation de Fourier d’une distribution et la dimension de Hausdorf de son support.

(ii) La construction des compacts d’une taille “critique” qui peut supporter des distributions (voire des pseudo-fonctions) avec une partie anti-analytique appartenant à l 2 .

On donne également quelques exemples de l’asymétrie qui peut se produire pour des mesures à “petit” support. Plusieurs questions ouvertes sont formulées.

We study the “Fourier symmetry” of measures and distributions on the circle, in relation with the size of their supports. The main results of this paper are:

(i) A one-side extension of Frostman’s theorem, which connects the rate of decay of Fourier transform of a distribution with the Hausdorff dimension of its support;

(ii) A construction of compacts of “critical” size, which support distributions (even pseudo-functions) with anti-analytic part belonging to l 2 .

We also give examples of non-symmetry which may occur for measures with “small” support. A number of open questions are stated.

DOI : 10.5802/aif.2801
Classification : 42A63, 42A50, 42A20, 28A80
Keywords: Hausorff dimension, Frostman’s theorem, Fourier symmetry
Mot clés : Dimension de Hausdorff, Théorème de Frostman, Symétrie de Fourier.

Kozma, Gady 1 ; Olevskiĭ, Alexander 2

1 Department of Mathematics, The Weizmann Institute of Science, Rehovot POB 76100, Israel.
2 School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel.
@article{AIF_2013__63_4_1205_0,
     author = {Kozma, Gady and Olevski\u{i}, Alexander},
     title = {Singular distributions, dimension of support, and symmetry of {Fourier} transform},
     journal = {Annales de l'Institut Fourier},
     pages = {1205--1226},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {63},
     number = {4},
     year = {2013},
     doi = {10.5802/aif.2801},
     mrnumber = {3137353},
     zbl = {06359587},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2801/}
}
TY  - JOUR
AU  - Kozma, Gady
AU  - Olevskiĭ, Alexander
TI  - Singular distributions, dimension of support, and symmetry of Fourier transform
JO  - Annales de l'Institut Fourier
PY  - 2013
SP  - 1205
EP  - 1226
VL  - 63
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2801/
DO  - 10.5802/aif.2801
LA  - en
ID  - AIF_2013__63_4_1205_0
ER  - 
%0 Journal Article
%A Kozma, Gady
%A Olevskiĭ, Alexander
%T Singular distributions, dimension of support, and symmetry of Fourier transform
%J Annales de l'Institut Fourier
%D 2013
%P 1205-1226
%V 63
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2801/
%R 10.5802/aif.2801
%G en
%F AIF_2013__63_4_1205_0
Kozma, Gady; Olevskiĭ, Alexander. Singular distributions, dimension of support, and symmetry of Fourier transform. Annales de l'Institut Fourier, Tome 63 (2013) no. 4, pp. 1205-1226. doi : 10.5802/aif.2801. https://aif.centre-mersenne.org/articles/10.5802/aif.2801/

[1] Berman, Robert D. Boundary limits and an asymptotic Phragmén-Lindelöf theorem for analytic functions of slow growth, Indiana University Mathematics Journal, Volume 41/2 (1992), pp. 465-481 | DOI | MR | Zbl

[2] Beurling, Arne Sur les spectres des fonctions ([French, on the spectrum of functions], Analyse Harmonique) (1949), pp. 9-29 | MR | Zbl

[3] Dahlberg, B. E. J. On the radial boundary values of subharmonic functions, Math. Scand., Volume 40 (1977), pp. 301-317 | EuDML | MR | Zbl

[4] Falconer, Kenneth Fractal geometry, Mathematical foundations and applications, John Wiley & Sons, Inc., Hoboken, New Jersey, 2003 | MR | Zbl

[5] Hruščev, S. V.; Peller, V. V. Hankel operators of Schatten-von Neumann class and their application to stationary processes and best approximations (Appendix to the English edition of: N. K. Nikol’skiĭ, Treatise on the shift operator, Translated from the Russian by Jaak Peetre. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]), Volume 273, Springer-Verlag, Berlin, 1986, pp. 399-454 | MR

[6] Kahane, J.-P. Some random series of functions, Cambridge Studies in Advanced Mathematics 5, Cambridge University Press, Cambridge, 1985 | MR | Zbl

[7] Kahane, J.-P.; Salem, Raphaël Ensembles parfaits et séries trigonométriques, [French, Perfect sets and trigonometric series], Second ed., With notes by Kahane, Thomas W. Körner, Russell Lyons and Stephen William Drury. Hermann, Paris, 1994 | MR | Zbl

[8] Katznelson, Yitzhak An introduction to harmonic analysis, Dover Publications, Inc., New York, 1976 | MR | Zbl

[9] Kaufman, Robert On the theorem of Jarník and Besicovitch, Acta Arith., Volume 39:3 (1981), pp. 265-267 | EuDML | MR | Zbl

[10] Kechris, Alexander S.; Louveau, Alain Descriptive set theory and the structure of sets of uniqueness, London Mathematical Society Lecture Note Series, 128, Cambridge University Press, Cambridge, 1987 | MR | Zbl

[11] Kozma, Gady; Olevskiĭ, Alexander A null series with small anti-analytic part, Comptes Rendus de l’Académie des Sciences Paris, Série I Mathématique, Volume 336:6 (2003), pp. 475-478 | DOI | MR | Zbl

[12] Kozma, Gady; Olevskiĭ, Alexander Analytic representation of functions and a new quasi-analyticity threshold, Annals of Math., Volume 164:3 (2006), pp. 1033-1064 | DOI | MR | Zbl

[13] Kozma, Gady; Olevskiĭ, Alexander Is PLA large?, Bull. Lond. Math. Soc., Volume 39:2 (2007), pp. 173-180 | DOI | MR | Zbl

[14] de Leeuw, K.; Katznelson, Yitzhak The two sides of a Fourier-Stieltjes transform and almost idempotent measures, Israel J. Math., Volume 8 (1970), pp. 213-229 | DOI | MR | Zbl

[15] Lev, Nir; Olevskiĭ, Alexander Wiener’s ‘closure of translates’ problem and Piatetski-Shapiro’s uniqueness phenomenon (To appear in Ann. Math. http://arxiv.org/abs/0908.0447) | MR | Zbl

[16] Mattila, Pertti Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[17] Mockenhaupt, Gerd Salem sets and restriction properties of Fourier transforms, Geom. Funct. Anal., Volume 10:6 (2000), pp. 1579-1587 | DOI | MR | Zbl

[18] Pyateckiĭ-Šapiro, I. I. Дополнение к работе “К проблеме единственности разложения функции в тригонометрический ряд”, Moskov. Gos. Univ. Uč. Zap. Mat., Volume 165 (1954), pp. 79-97 ([Russian, Supplement to the work “On the problem of uniqueness of expansion of a function in a trigonometric series”] English translation in Selected Works of Ilya Piatetski-Shapiro, AMS Collected Works, vol. 15, 2000)

[19] Rajchman, Alexandre Une classe de séries trigonométriques qui convergent presque partout vers zéro, [French, A class of trigonometric series converging almost everywhere to zero] Math. Ann., Volume 101:1 (1929), pp. 686-700 | MR

[20] Tamashiro, Masakazu Dimensions in a separable metric space, Kyushu J. Math., Volume 49:1 (1995), pp. 143-162 | DOI | MR | Zbl

[21] Zygmund, Antoni Trigonometric series. Vol. I, II, With a foreword by Robert A. Fefferman. Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002 | MR | Zbl

Cité par Sources :