An introduction to quantum sheaf cohomology
[Une introduction à la cohomologie quantique des faisceaux]
Annales de l'Institut Fourier, Tome 61 (2011) no. 7, pp. 2985-3005.

Dans ces notes nous passons en revue la « cohomologie quantique des faisceaux », une déformation de la cohomologie des faisceaux qui apparaît d’une façon similaire à la cohomologie quantique ordinaire (tout en la généralisant parfois). La cohomologie quantique des faisceaux apparaît dans l’étude de la symétrie miroir (0,2), ce qui est passé en revue. Après ça nous passons en revue la théorie standard des champs topologique et les modèles A/2, B/2, dans lesquels la cohomologie quantique des faisceaux apparaît, et esquissons les définitions basiques et les calculs. Ensuite nous discutons dans ce contexte les modèles de supersymétrie Landau-Ginzburg (2,2) et (0,2) ainsi que la cohomologie quantique des faisceaux.

In this note we review “quantum sheaf cohomology,” a deformation of sheaf cohomology that arises in a fashion closely akin to (and sometimes generalizing) ordinary quantum cohomology. Quantum sheaf cohomology arises in the study of (0,2) mirror symmetry, which we review. We then review standard topological field theories and the A/2, B/2 models, in which quantum sheaf cohomology arises, and outline basic definitions and computations. We then discuss (2,2) and (0,2) supersymmetric Landau-Ginzburg models, and quantum sheaf cohomology in that context.

DOI : 10.5802/aif.2800
Classification : 81T45, 53D45, 14N35
Keywords: (0, 2) mirror symmetry, quantum sheaf cohomology, Landau-Ginzburg model
Mot clés : symétrie miroir (0, 2), cohomologie quantique des faisceaux, modèle Landau-Ginzburg

Sharpe, Eric 1

1 Virginia Tech Physics Department Robeson Hall (0435) Blacksburg, VA 24061 (USA)
@article{AIF_2011__61_7_2985_0,
     author = {Sharpe, Eric},
     title = {An introduction to quantum sheaf cohomology},
     journal = {Annales de l'Institut Fourier},
     pages = {2985--3005},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {61},
     number = {7},
     year = {2011},
     doi = {10.5802/aif.2800},
     mrnumber = {3112514},
     zbl = {1270.81200},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2800/}
}
TY  - JOUR
AU  - Sharpe, Eric
TI  - An introduction to quantum sheaf cohomology
JO  - Annales de l'Institut Fourier
PY  - 2011
SP  - 2985
EP  - 3005
VL  - 61
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2800/
DO  - 10.5802/aif.2800
LA  - en
ID  - AIF_2011__61_7_2985_0
ER  - 
%0 Journal Article
%A Sharpe, Eric
%T An introduction to quantum sheaf cohomology
%J Annales de l'Institut Fourier
%D 2011
%P 2985-3005
%V 61
%N 7
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2800/
%R 10.5802/aif.2800
%G en
%F AIF_2011__61_7_2985_0
Sharpe, Eric. An introduction to quantum sheaf cohomology. Annales de l'Institut Fourier, Tome 61 (2011) no. 7, pp. 2985-3005. doi : 10.5802/aif.2800. https://aif.centre-mersenne.org/articles/10.5802/aif.2800/

[1] Adams, Allan; Basu, Anirban; Sethi, Savdeep (0,2) duality, Adv. Theor. Math. Phys., Volume 7 (2003) no. 5, pp. 865-950 http://projecteuclid.org/getRecord?id=euclid.atmp/1111510433 | MR | Zbl

[2] Adams, Allan; Distler, Jacques; Ernebjerg, Morten Topological heterotic rings, Adv. Theor. Math. Phys., Volume 10 (2006) no. 5, pp. 657-682 http://projecteuclid.org/getRecord?id=euclid.atmp/1175791013 | MR | Zbl

[3] Ando, Matt; Sharpe, Eric Elliptic genera of Landau-Ginzburg models over nontrivial spaces (arXiv: 0905.1285)

[4] Blumenhagen, Ralph; Schimmrigk, Rolf; Wißkirchen, Andreas (0,2) mirror symmetry, Nuclear Phys. B, Volume 486 (1997) no. 3, pp. 598-628 | DOI | MR | Zbl

[5] Blumenhagen, Ralph; Sethi, Savdeep On orbifolds of (0,2) models, Nuclear Phys. B, Volume 491 (1997) no. 1-2, pp. 263-278 | DOI | MR | Zbl

[6] Donagi, Ron; Guffin, Josh; Katz, Sheldon; Sharpe, Eric A mathematical theory of quantum sheaf cohomology (arXiv: 1110.3751)

[7] Donagi, Ron; Guffin, Josh; Katz, Sheldon; Sharpe, Eric Physical aspects of quantum sheaf cohomology for deformations of tangent bundles of toric varieties (arXiv: 1110.3752)

[8] Donagi, Ron; Sharpe, Eric GLSM’s for partial flag manifolds, J. Geom. Phys., Volume 58 (2008), pp. 1662-1692 | DOI | MR | Zbl

[9] Fan, Huijun; Jarvis, Tyler; Ruan, Yongbin The Witten equation and its virtual fundamental cycle (arXiv: 0712.4025)

[10] Fan, Huijun; Jarvis, Tyler; Ruan, Yongbin The Witten equation, mirror symmetry, and quantum singularity theory (arXiv: 0712.4021)

[11] Greene, B. R.; Plesser, M. R. Duality in Calabi-Yau moduli space, Nuclear Phys. B, Volume 338 (1990) no. 1, pp. 15-37 | DOI | MR

[12] Guffin, Josh; Katz, Sheldon Deformed quantum cohomology and (0,2) mirror symmetry, J. High Energy Phys. (2010) no. 8, pp. 109, 27 | MR

[13] Guffin, Josh; Sharpe, Eric A-twisted heterotic Landau-Ginzburg models, J. Geom. Phys., Volume 59 (2009) no. 12, pp. 1581-1596 | DOI | MR | Zbl

[14] Guffin, Josh; Sharpe, Eric A-twisted Landau-Ginzburg models, J. Geom. Phys., Volume 59 (2009) no. 12, pp. 1547-1580 | DOI | MR | Zbl

[15] Hori, Kentaro; Vafa, Cumrun Mirror symmetry (hep-th/0002222)

[16] Ito, Kei Topological phase of N=2 superconformal field theory and topological Landau-Ginzburg field theory, Phys. Lett., Volume B250 (1990), pp. 91-95 | DOI | MR

[17] Katz, Sheldon; Sharpe, Eric Notes on certain (0,2) correlation functions, Comm. Math. Phys., Volume 262 (2006) no. 3, pp. 611-644 | DOI | MR | Zbl

[18] Kontsevich, Maxim Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (1995), pp. 120-139 | MR | Zbl

[19] Kreuzer, Maximilian; McOrist, Jock; Melnikov, Ilarion V.; Plesser, M.Ronen (0,2) deformations of linear sigma models, J. High Energy Phys. (2011) no. 7, pp. 044 | DOI | MR

[20] McOrist, Jock; Melnikov, Ilarion V. Half-twisted correlators from the Coulomb branch, J. High Energy Phys. (2008) no. 4, pp. 071, 19 | DOI | MR | Zbl

[21] McOrist, Jock; Melnikov, Ilarion V. Summing the instantons in half-twisted linear sigma models, J. High Energy Phys. (2009) no. 2, pp. 026, 61 | DOI | MR | Zbl

[22] Melnikov, Ilarion V. (0,2) Landau-Ginzburg models and residues, J. High Energy Phys. (2009) no. 9, pp. 118, 25 | DOI | MR

[23] Melnikov, Ilarion V.; Plesser, M.Ronen A (0,2) mirror map, J. High Energy Phys. (2011) no. 2, pp. 001 | DOI | MR

[24] Melnikov, Ilarion V.; Sethi, Savdeep Half-twisted (0,2) Landau-Ginzburg models, J. High Energy Phys. (2008) no. 3, pp. 040, 21 | DOI | MR

[25] Morrison, David R.; Plesser, M. Ronen Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nuclear Phys. B, Volume 440 (1995) no. 1-2, pp. 279-354 | DOI | MR | Zbl

[26] Morrison, David R.; Plesser, M. Ronen Towards mirror symmetry as duality for two-dimensional abelian gauge theories, Strings ’95 (Los Angeles, CA, 1995), World Sci. Publ., River Edge, NJ, 1996, pp. 374-387 | MR | Zbl

[27] Sharpe, Eric Notes on correlation functions in (0,2) theories, Snowbird lectures on string geometry (Contemp. Math.), Volume 401, Amer. Math. Soc., Providence, RI, 2006, pp. 93-104 | MR | Zbl

[28] Sharpe, Eric Notes on certain other (0,2) correlation functions, Adv. Theor. Math. Phys., Volume 13 (2009) no. 1, pp. 33-70 http://projecteuclid.org/getRecord?id=euclid.atmp/1232551519 | MR | Zbl

[29] Vafa, Cumrun Topological Landau-Ginzburg models, Mod. Phys. Lett., Volume A6 (1991), pp. 337-346 | DOI | MR | Zbl

[30] Witten, Edward Mirror manifolds and topological field theory, Essays on mirror manifolds, Int. Press, Hong Kong, 1992, pp. 120-158 | MR | Zbl

Cité par Sources :