Recovering quantum graphs from their Bloch spectrum
[Récupération des graphes quantiques à partir de leur spectre de Bloch]
Annales de l'Institut Fourier, Tome 63 (2013) no. 3, pp. 1149-1176.

Nous définissons le spectre de Bloch d’un graphe quantique comme la fonction qui assigne à chaque élément de la cohomologie de deRham le spectre d’un opérateur de Schrödinger magnétique associé. On montre que le spectre de Bloch détermine le tore d’Albanese, la structure de bloc et la planarité du graphe. Il détermine un dual géometrique d’un graphe planaire. Cela nous permet de montrer que le spectre de Bloch identifie et détermine complètement les graphes quantiques planaires 3-connexes.

We define the Bloch spectrum of a quantum graph to be the map that assigns to each element in the deRham cohomology the spectrum of an associated magnetic Schrödinger operator. We show that the Bloch spectrum determines the Albanese torus, the block structure and the planarity of the graph. It determines a geometric dual of a planar graph. This enables us to show that the Bloch spectrum indentifies and completely determines planar 3-connected quantum graphs.

Reçu le :
Accepté le :
DOI : 10.5802/aif.2786
Classification : 35R30, 58J50, 58J53, 78A46, 81Q10, 58C40
Keywords: quantum graphs, Schrödinger operators, spectrum, inverse spectral problem
Mot clés : graphes quantiques, opérateurs Schrödinger, spectre, problème spectral inverse

Rueckriemen, Ralf 1

1 Dartmouth College, Kemeny Hall, Hanover, 03755 NH, USA
@article{AIF_2013__63_3_1149_0,
     author = {Rueckriemen, Ralf},
     title = {Recovering quantum graphs from their {Bloch} spectrum},
     journal = {Annales de l'Institut Fourier},
     pages = {1149--1176},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {63},
     number = {3},
     year = {2013},
     doi = {10.5802/aif.2786},
     mrnumber = {3137482},
     zbl = {1301.35195},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2786/}
}
TY  - JOUR
AU  - Rueckriemen, Ralf
TI  - Recovering quantum graphs from their Bloch spectrum
JO  - Annales de l'Institut Fourier
PY  - 2013
SP  - 1149
EP  - 1176
VL  - 63
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2786/
DO  - 10.5802/aif.2786
LA  - en
ID  - AIF_2013__63_3_1149_0
ER  - 
%0 Journal Article
%A Rueckriemen, Ralf
%T Recovering quantum graphs from their Bloch spectrum
%J Annales de l'Institut Fourier
%D 2013
%P 1149-1176
%V 63
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2786/
%R 10.5802/aif.2786
%G en
%F AIF_2013__63_3_1149_0
Rueckriemen, Ralf. Recovering quantum graphs from their Bloch spectrum. Annales de l'Institut Fourier, Tome 63 (2013) no. 3, pp. 1149-1176. doi : 10.5802/aif.2786. https://aif.centre-mersenne.org/articles/10.5802/aif.2786/

[1] Band, Ram; Parzanchevski, Ori; Ben-Shach, Gilad The isospectral fruits of representation theory: quantum graphs and drums, J. Phys. A, Volume 42 (2009) no. 17, p. 175202, 42 | DOI | MR | Zbl

[2] von Below, Joachim Can one hear the shape of a network?, Partial differential equations on multistructures (Luminy, 1999) (Lecture Notes in Pure and Appl. Math.), Volume 219, Dekker, New York, 2001, pp. 19-36 | MR | Zbl

[3] Bolte, Jens; Endres, Sebastian Trace formulae for quantum graphs, Analysis on graphs and its applications (Proc. Sympos. Pure Math.), Volume 77, Amer. Math. Soc., Providence, RI, 2008, pp. 247-259 | MR | Zbl

[4] Diestel, Reinhard Graph theory, Graduate Texts in Mathematics, 173, Springer-Verlag, Berlin, 2005, xvi+411 pages | MR | Zbl

[5] Eskin, Gregory; Ralston, James; Trubowitz, Eugene On isospectral periodic potentials in R n . II, Comm. Pure Appl. Math., Volume 37 (1984) no. 6, pp. 715-753 | DOI | MR | Zbl

[6] Gaveau, Bernard; Okada, Masami Differential forms and heat diffusion on one-dimensional singular varieties, Bull. Sci. Math., Volume 115 (1991) no. 1, pp. 61-79 | MR | Zbl

[7] Gordon, Carolyn S.; Guerini, Pierre; Kappeler, Thomas; Webb, David L. Inverse spectral results on even dimensional tori, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 7, pp. 2445-2501 | DOI | Numdam | MR | Zbl

[8] Guillemin, V. Inverse spectral results on two-dimensional tori, J. Amer. Math. Soc., Volume 3 (1990) no. 2, pp. 375-387 | DOI | MR | Zbl

[9] Gutkin, Boris; Smilansky, Uzy Can one hear the shape of a graph?, J. Phys. A, Volume 34 (2001) no. 31, pp. 6061-6068 | DOI | MR | Zbl

[10] Kac, Mark Can one hear the shape of a drum?, Amer. Math. Monthly, Volume 73 (1966) no. 4, part II, pp. 1-23 | DOI | MR | Zbl

[11] Kotani, Motoko; Sunada, Toshikazu Jacobian tori associated with a finite graph and its abelian covering graphs, Adv. in Appl. Math., Volume 24 (2000) no. 2, pp. 89-110 | DOI | MR | Zbl

[12] Kottos, Tsampikos; Smilansky, Uzy Periodic orbit theory and spectral statistics for quantum graphs, Ann. Physics, Volume 274 (1999) no. 1, pp. 76-124 | DOI | MR | Zbl

[13] Kuchment, Peter Quantum graphs: an introduction and a brief survey, Analysis on graphs and its applications (Proc. Sympos. Pure Math.), Volume 77, Amer. Math. Soc., Providence, RI, 2008, pp. 291-312 | MR | Zbl

[14] Mohar, Bojan; Thomassen, Carsten Graphs on surfaces, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2001, xii+291 pages | MR | Zbl

[15] Post, Olaf First order approach and index theorems for discrete and metric graphs, Ann. Henri Poincaré, Volume 10 (2009) no. 5, pp. 823-866 | DOI | MR | Zbl

[16] Roth, Jean-Pierre Le spectre du laplacien sur un graphe, Théorie du potentiel (Orsay, 1983) (Lecture Notes in Math.), Volume 1096, Springer, Berlin, 1984, pp. 521-539 | DOI | MR | Zbl

Cité par Sources :