Nous étudions les fibrés vectoriels relativement semi-stables sur des varietés non-kählériennes qui sont des fibrés principaux elliptiques. Les principaux outils techniques utilisés sont la transformée de Fourier-Mukai tordue et une construction de revêtement spectral. Pour un exemple important de ces fibrés principaux, nous calculons les invariants numériques des fibrés elliptiques sur une surface de Kodaira primaire.
We study relatively semi-stable vector bundles and their moduli on non-Kähler principal elliptic bundles over compact complex manifolds of arbitrary dimension. The main technical tools used are the twisted Fourier-Mukai transform and a spectral cover construction. For the important example of such principal bundles, the numerical invariants of a 3-dimensional non-Kähler elliptic principal bundle over a primary Kodaira surface are computed.
Accepté le :
DOI : 10.5802/aif.2783
Keywords: non-Kähler principal elliptic bundles, Calabi-Yau type threefolds, holomorphic vector bundles, moduli spaces
Mot clés : Fibrés elliptiques principaux non-kählériens, varietés de dimension 3 de type Calabi-Yau, fibrés vectoriels holomorphes, espaces de modules
Brînzănescu, Vasile 1 ; Halanay, Andrei D. 2 ; Trautmann, Günther 3
@article{AIF_2013__63_3_1033_0, author = {Br{\^\i}nz\u{a}nescu, Vasile and Halanay, Andrei D. and Trautmann, G\"unther}, title = {Vector bundles on {non-Kaehler} elliptic principal bundles}, journal = {Annales de l'Institut Fourier}, pages = {1033--1054}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {3}, year = {2013}, doi = {10.5802/aif.2783}, mrnumber = {3137479}, zbl = {1299.14037}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2783/} }
TY - JOUR AU - Brînzănescu, Vasile AU - Halanay, Andrei D. AU - Trautmann, Günther TI - Vector bundles on non-Kaehler elliptic principal bundles JO - Annales de l'Institut Fourier PY - 2013 SP - 1033 EP - 1054 VL - 63 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2783/ DO - 10.5802/aif.2783 LA - en ID - AIF_2013__63_3_1033_0 ER -
%0 Journal Article %A Brînzănescu, Vasile %A Halanay, Andrei D. %A Trautmann, Günther %T Vector bundles on non-Kaehler elliptic principal bundles %J Annales de l'Institut Fourier %D 2013 %P 1033-1054 %V 63 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2783/ %R 10.5802/aif.2783 %G en %F AIF_2013__63_3_1033_0
Brînzănescu, Vasile; Halanay, Andrei D.; Trautmann, Günther. Vector bundles on non-Kaehler elliptic principal bundles. Annales de l'Institut Fourier, Tome 63 (2013) no. 3, pp. 1033-1054. doi : 10.5802/aif.2783. https://aif.centre-mersenne.org/articles/10.5802/aif.2783/
[1] The Derived Category of the Intersection of Four Quadrics, 2009 (arXiv:0904.1764)
[2] Spinor sheaves on singular quadrics, Proc. Amer. Math. Soc., Volume 139 (2011) no. 11, pp. 3867-3879 | DOI | MR | Zbl
[3] Vector bundles over an elliptic curve, Proc. London Math. Soc. (3), Volume 7 (1957), pp. 414-452 | DOI | MR | Zbl
[4] Espace analytique réduit des cycles analytiques complexes compacts d’un espace analytique complexe de dimension finie, Fonctions de plusieurs variables complexes, II (Sém. François Norguet, 1974–1975), Springer, Berlin, 1975, p. 1-158. Lecture Notes in Math., Vol. 482 | MR | Zbl
[5] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 4, Springer-Verlag, Berlin, 1984, x+304 pages | MR | Zbl
[6] Fourier-Mukai and Nahm transforms in geometry and mathematical physics, Progress in Mathematics, 276, Birkhäuser Boston Inc., Boston, MA, 2009, xvi+423 pages | DOI | MR | Zbl
[7] Mirror symmetry on surfaces via Fourier-Mukai transform, Comm. Math. Phys., Volume 195 (1998) no. 1, pp. 79-93 | DOI | MR | Zbl
[8] Compactifications of heterotic theory on non-Kähler complex manifolds. I, J. High Energy Phys. (2003) no. 4, p. 007, 60 pp. (electronic) | DOI | MR
[9] Twisting derived equivalences, Trans. Amer. Math. Soc., Volume 361 (2009) no. 10, pp. 5469-5504 | DOI | MR | Zbl
[10] Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 302, Springer-Verlag, Berlin, 2004, xii+635 pages | MR | Zbl
[11] Semiorthogonal decomposition for algebraic varieties, 1995 (eprinthttp://arxiv.org/abs/alg-geom/9506012)
[12] Fourier-Mukai transforms for elliptic surfaces, J. Reine Angew. Math., Volume 498 (1998), pp. 115-133 | DOI | MR | Zbl
[13] Equivalences of triangulated categories and Fourier-Mukai transforms, Bull. London Math. Soc., Volume 31 (1999) no. 1, pp. 25-34 | DOI | MR | Zbl
[14] Fourier-Mukai transforms for and elliptic fibrations, J. Algebraic Geom., Volume 11 (2002) no. 4, pp. 629-657 | DOI | MR | Zbl
[15] Stable bundles on non-Kähler elliptic surfaces, Comm. Math. Phys., Volume 254 (2005) no. 3, pp. 565-580 | DOI | MR | Zbl
[16] Twisted Fourier-Mukai transforms and bundles on non-Kähler elliptic surfaces, Math. Res. Lett., Volume 13 (2006) no. 4, pp. 501-514 | DOI | MR | Zbl
[17] Néron-Severi group for torus quasi bundles over curves, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994) (Lecture Notes in Pure and Appl. Math.), Volume 179, Dekker, New York, 1996, pp. 11-32 | MR | Zbl
[18] On a relative Fourier-Mukai transform on genus one fibrations, Manuscripta Math., Volume 120 (2006) no. 3, pp. 283-306 | DOI | MR | Zbl
[19] Derived categories of twisted sheaves on elliptic threefolds, J. Reine Angew. Math., Volume 544 (2002), pp. 161-179 | DOI | MR | Zbl
[20] Non-birational twisted derived equivalences in abelian GLSMs, Comm. Math. Phys., Volume 294 (2010) no. 3, pp. 605-645 | DOI | MR | Zbl
[21] Derived categories of twisted sheaves on Calabi-Yau manifolds, ProQuest LLC, Ann Arbor, MI, 2000, 196 pages http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9967459 Thesis (Ph.D.)–Cornell University | MR
[22] Non-Kähler string backgrounds and their five torsion classes, Nuclear Phys. B, Volume 652 (2003) no. 1-3, pp. 5-34 | DOI | MR | Zbl
[23] Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Études Sci. Publ. Math. (1968) no. 35, pp. 259-278 | Numdam | MR | Zbl
[24] Spectral covers, Current topics in complex algebraic geometry (Berkeley, CA, 1992/93) (Math. Sci. Res. Inst. Publ.), Volume 28, Cambridge Univ. Press, Cambridge, 1995, pp. 65-86 | MR | Zbl
[25] Principal bundles on elliptic fibrations, Asian J. Math., Volume 1 (1997) no. 2, pp. 214-223 | MR | Zbl
[26] Torus fibrations, gerbes, and duality, Mem. Amer. Math. Soc., Volume 193 (2008) no. 901, p. vi+90 (With an appendix by Dmitry Arinkin) | MR | Zbl
[27] Flatness and privilege, Enseignement Math. (2), Volume 14 (1968), pp. 47-74 | MR | Zbl
[28] Commutative algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995, xvi+785 pages (With a view toward algebraic geometry) | DOI | MR | Zbl
[29] Rank two vector bundles over regular elliptic surfaces, Invent. Math., Volume 96 (1989) no. 2, pp. 283-332 | DOI | MR | Zbl
[30] Vector bundles over elliptic fibrations, J. Algebraic Geom., Volume 8 (1999) no. 2, pp. 279-401 | MR | Zbl
[31] Geometric model for complex non-Kähler manifolds with structure, Comm. Math. Phys., Volume 251 (2004) no. 1, pp. 65-78 | DOI | MR | Zbl
[32] Algebraic geometry, Springer-Verlag, New York, 1977, xvi+496 pages (Graduate Texts in Mathematics, No. 52) | MR | Zbl
[33] Topological methods in algebraic geometry, Third enlarged edition. New appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel. Die Grundlehren der Mathematischen Wissenschaften, Band 131, Springer-Verlag New York, Inc., New York, 1966, x+232 pages | MR | Zbl
[34] Remarks on torus principal bundles, J. Math. Kyoto Univ., Volume 33 (1993) no. 1, pp. 227-259 | MR | Zbl
[35] Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, Oxford, 2006, viii+307 pages | DOI | MR | Zbl
[36] The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997, xiv+269 pages | MR | Zbl
[37] Vertex algebras, mirror symmetry, and D-branes: the case of complex tori, Comm. Math. Phys., Volume 233 (2003) no. 1, pp. 79-136 | DOI | MR | Zbl
[38] Derived categories of quadric fibrations and intersections of quadrics, Adv. Math., Volume 218 (2008) no. 5, pp. 1340-1369 | DOI | MR | Zbl
[39] Duality between and with its application to Picard sheaves, Nagoya Math. J., Volume 81 (1981), pp. 153-175 http://projecteuclid.org/getRecord?id=euclid.nmj/1118786312 | MR | Zbl
[40] Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay, 1970, viii+242 pages | MR | Zbl
[41] Derived categories of coherent sheaves and equivalences between them, Uspekhi Mat. Nauk, Volume 58 (2003) no. 3(351), pp. 89-172 | DOI | MR | Zbl
[42] Théorème de Douady au-dessus de , Ann. Scuola Norm. Sup. Pisa (3), Volume 23 (1969), pp. 451-459 | Numdam | MR | Zbl
[43] Stable sheaves on elliptic fibrations, J. Geom. Phys., Volume 43 (2002) no. 2-3, pp. 163-183 | DOI | MR | Zbl
[44] Semistable bundles over an elliptic curve, Adv. Math., Volume 98 (1993) no. 1, pp. 1-26 | DOI | MR | Zbl
Cité par Sources :