Nous déterminons des équations explicites pour les surfaces elliptiques de type qui ont une section et une fibre singulière maximale. Si la caractéristique du corps sous-jacent est différente de , pour chacun des deux types de fibre maximale, et , la surface est unique. En caractéristique les fibres maximales sont de type ou , et il y a deux, respectivement une, familles -dimensionales de telles surfaces.
We explicitly determine the elliptic surfaces with section and maximal singular fibre. If the characteristic of the ground field is different from , for each of the two possible maximal fibre types, and , the surface is unique. In characteristic the maximal fibre types are and , and there exist two (resp. one) one-parameter families of such surfaces.
Keywords: elliptic surface, $K3$ surface, maximal singular fibre, wild ramification.
Mot clés : surface elliptique, surface de type $K3$, fibre singulière maximale, ramification sauvage
Schütt, Matthias 1 ; Schweizer, Andreas 2
@article{AIF_2013__63_2_689_0, author = {Sch\"utt, Matthias and Schweizer, Andreas}, title = {On the uniqueness of elliptic {K3} surfaces with maximal singular fibre}, journal = {Annales de l'Institut Fourier}, pages = {689--713}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {2}, year = {2013}, doi = {10.5802/aif.2773}, mrnumber = {3112845}, zbl = {1273.14078}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2773/} }
TY - JOUR AU - Schütt, Matthias AU - Schweizer, Andreas TI - On the uniqueness of elliptic K3 surfaces with maximal singular fibre JO - Annales de l'Institut Fourier PY - 2013 SP - 689 EP - 713 VL - 63 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2773/ DO - 10.5802/aif.2773 LA - en ID - AIF_2013__63_2_689_0 ER -
%0 Journal Article %A Schütt, Matthias %A Schweizer, Andreas %T On the uniqueness of elliptic K3 surfaces with maximal singular fibre %J Annales de l'Institut Fourier %D 2013 %P 689-713 %V 63 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2773/ %R 10.5802/aif.2773 %G en %F AIF_2013__63_2_689_0
Schütt, Matthias; Schweizer, Andreas. On the uniqueness of elliptic K3 surfaces with maximal singular fibre. Annales de l'Institut Fourier, Tome 63 (2013) no. 2, pp. 689-713. doi : 10.5802/aif.2773. https://aif.centre-mersenne.org/articles/10.5802/aif.2773/
[1] Supersingular surfaces, Ann. Sci. École Norm. Sup. (4), Volume 7 (1974), pp. 543-568 | Numdam | MR | Zbl
[2] The Shafarevich-Tate conjecture for pencils of elliptic curves on surfaces, Invent. Math., Volume 20 (1973), pp. 249-266 | DOI | MR | Zbl
[3] Explicit calculation of elliptic fibrations of K3-surfaces and their Belyi-maps, Number theory and polynomials (London Math. Soc. Lecture Note Ser.), Volume 352, Cambridge Univ. Press, Cambridge, 2008, pp. 33-51 | MR
[4] Enriques surfaces, I. Progress in Math., 76, Birkhäuser, 1989 | MR | Zbl
[5] A supersingular K3 surface in characteristic 2 and the Leech lattice, Int. Math. Res. Not. (2003) no. 1, pp. 1-23 | DOI | MR | Zbl
[6] Mordell-Weil lattices in characteristic 2. I. Construction and first properties, Int. Math. Res. Not. (1994) no. 8, pp. 343-361 | DOI | MR | Zbl
[7] Local and global ramification properties of elliptic curves in characteristics two and three, Algorithmic Algebra and Number Theory, Berlin-Heidelberg-New York: Springer, 1998, pp. 49-64 | MR | Zbl
[8] The Diophantine equation (Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969)), pp. 173-198
[9] On compact analytic surfaces II, III, Ann. of Math. (2), Volume 77 (1963), pp. 563-626 ibid. 78 (1963), 1–40 | DOI | MR | Zbl
[10] Motivic Orthogonal Two-dimensional Representations of Gal, Israel J. Math., Volume 92 (1995), pp. 149-156 | DOI | MR | Zbl
[11] Configurations of Fibers on Elliptic K3 surfaces, Math. Z., Volume 201 (1989), pp. 339-361 | DOI | MR | Zbl
[12] Reduction of Elliptic Curves in Equal Characteristic, Canad. Math. Bull., Volume 48 (2005), pp. 428-444 | DOI | MR | Zbl
[13] Inégalité du discriminant pour les pinceaux elliptiques à réductions quelconques, Compositio Math., Volume 120 (2000) no. 1, pp. 83-117 | DOI | MR | Zbl
[14] A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izv., Volume 5 (1972) no. 3, pp. 547-588 | DOI | Zbl
[15] Extremal elliptic surfaces in characteristic and , Manuscripta Math., Volume 102 (2000), pp. 505-521 | DOI | MR | Zbl
[16] The maximal singular fibres of elliptic K3 surfaces, Arch. Math. (Basel), Volume 87 (2006) no. 4, pp. 309-319 | DOI | MR | Zbl
[17] CM newforms with rational coefficients, Ramanujan J., Volume 19 (2009), pp. 187-205 | DOI | MR | Zbl
[18] Davenport-Stothers inequalities and elliptic surfaces in positive characteristic, Quarterly J. Math., Volume 59 (2008), pp. 499-522 | DOI | MR | Zbl
[19] Arithmetic of the [19,1,1,1,1,1] fibration, Comm. Math. Univ. St. Pauli, Volume 55 (2006) no. 1, pp. 9-16 | MR | Zbl
[20] On the Mordell-Weil lattices, Comm. Math. Univ. St. Pauli, Volume 39 (1990), pp. 211-240 | MR | Zbl
[21] The elliptic K3 surfaces with a maximal singular fibre, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 461-466 | DOI | MR | Zbl
[22] Elliptic surfaces and Davenport-Stothers triples, Comment. Math. Univ. St. Pauli, Volume 54 (2005), pp. 49-68 | MR | Zbl
[23] On Singular Surfaces, Baily W. L. Jr., Shioda, T. (eds.) (Complex analysis and algebraic geometry), Iwanami Shoten, Tokyo, 1977, pp. 119-136 | MR | Zbl
[24] Advanced Topics in the Arithmetic of Elliptic Curves, Springer GTM, Berlin-Heidelberg-New York, 1994 | MR | Zbl
[25] Polynomial identities and Hauptmoduln, Quart. J. Math. Oxford (2), Volume 32 (1981), pp. 349-370 | DOI | MR | Zbl
[26] Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry ((Proc. Conf. Purdue Univ., 1963)), Harper & Row, 1965, pp. 93-110 | MR | Zbl
[27] Algorithm for determining the type of a singular fibre in an elliptic pencil, Modular functions of one variable IV ((Antwerpen 1972), SLN), Volume 476, 1975, pp. 33-52 | MR | Zbl
Cité par Sources :