[Sur l’unicité des surfaces elliptiques de type K3 ayant une fibre singulière maximale]
Nous déterminons des équations explicites pour les surfaces elliptiques de type
We explicitly determine the elliptic
Keywords: elliptic surface,
Mots-clés : surface elliptique, surface de type
Schütt, Matthias 1 ; Schweizer, Andreas 2
@article{AIF_2013__63_2_689_0, author = {Sch\"utt, Matthias and Schweizer, Andreas}, title = {On the uniqueness of elliptic {K3} surfaces with maximal singular fibre}, journal = {Annales de l'Institut Fourier}, pages = {689--713}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {2}, year = {2013}, doi = {10.5802/aif.2773}, mrnumber = {3112845}, zbl = {1273.14078}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2773/} }
TY - JOUR AU - Schütt, Matthias AU - Schweizer, Andreas TI - On the uniqueness of elliptic K3 surfaces with maximal singular fibre JO - Annales de l'Institut Fourier PY - 2013 SP - 689 EP - 713 VL - 63 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2773/ DO - 10.5802/aif.2773 LA - en ID - AIF_2013__63_2_689_0 ER -
%0 Journal Article %A Schütt, Matthias %A Schweizer, Andreas %T On the uniqueness of elliptic K3 surfaces with maximal singular fibre %J Annales de l'Institut Fourier %D 2013 %P 689-713 %V 63 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2773/ %R 10.5802/aif.2773 %G en %F AIF_2013__63_2_689_0
Schütt, Matthias; Schweizer, Andreas. On the uniqueness of elliptic K3 surfaces with maximal singular fibre. Annales de l'Institut Fourier, Tome 63 (2013) no. 2, pp. 689-713. doi : 10.5802/aif.2773. https://aif.centre-mersenne.org/articles/10.5802/aif.2773/
[1] Supersingular
[2] The Shafarevich-Tate conjecture for pencils of elliptic curves on
[3] Explicit calculation of elliptic fibrations of K3-surfaces and their Belyi-maps, Number theory and polynomials (London Math. Soc. Lecture Note Ser.), Volume 352, Cambridge Univ. Press, Cambridge, 2008, pp. 33-51 | MR
[4] Enriques surfaces, I. Progress in Math., 76, Birkhäuser, 1989 | MR | Zbl
[5] A supersingular K3 surface in characteristic 2 and the Leech lattice, Int. Math. Res. Not. (2003) no. 1, pp. 1-23 | DOI | MR | Zbl
[6] Mordell-Weil lattices in characteristic 2. I. Construction and first properties, Int. Math. Res. Not. (1994) no. 8, pp. 343-361 | DOI | MR | Zbl
[7] Local and global ramification properties of elliptic curves in characteristics two and three, Algorithmic Algebra and Number Theory, Berlin-Heidelberg-New York: Springer, 1998, pp. 49-64 | MR | Zbl
[8] The Diophantine equation
[9] On compact analytic surfaces II, III, Ann. of Math. (2), Volume 77 (1963), pp. 563-626 ibid. 78 (1963), 1–40 | DOI | MR | Zbl
[10] Motivic Orthogonal Two-dimensional Representations of Gal
[11] Configurations of
[12] Reduction of Elliptic Curves in Equal Characteristic, Canad. Math. Bull., Volume 48 (2005), pp. 428-444 | DOI | MR | Zbl
[13] Inégalité du discriminant pour les pinceaux elliptiques à réductions quelconques, Compositio Math., Volume 120 (2000) no. 1, pp. 83-117 | DOI | MR | Zbl
[14] A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izv., Volume 5 (1972) no. 3, pp. 547-588 | DOI | Zbl
[15] Extremal elliptic surfaces in characteristic
[16] The maximal singular fibres of elliptic K3 surfaces, Arch. Math. (Basel), Volume 87 (2006) no. 4, pp. 309-319 | DOI | MR | Zbl
[17] CM newforms with rational coefficients, Ramanujan J., Volume 19 (2009), pp. 187-205 | DOI | MR | Zbl
[18] Davenport-Stothers inequalities and elliptic surfaces in positive characteristic, Quarterly J. Math., Volume 59 (2008), pp. 499-522 | DOI | MR | Zbl
[19] Arithmetic of the [19,1,1,1,1,1] fibration, Comm. Math. Univ. St. Pauli, Volume 55 (2006) no. 1, pp. 9-16 | MR | Zbl
[20] On the Mordell-Weil lattices, Comm. Math. Univ. St. Pauli, Volume 39 (1990), pp. 211-240 | MR | Zbl
[21] The elliptic K3 surfaces with a maximal singular fibre, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 461-466 | DOI | MR | Zbl
[22] Elliptic surfaces and Davenport-Stothers triples, Comment. Math. Univ. St. Pauli, Volume 54 (2005), pp. 49-68 | MR | Zbl
[23] On Singular
[24] Advanced Topics in the Arithmetic of Elliptic Curves, Springer GTM, Berlin-Heidelberg-New York, 1994 | MR | Zbl
[25] Polynomial identities and Hauptmoduln, Quart. J. Math. Oxford (2), Volume 32 (1981), pp. 349-370 | DOI | MR | Zbl
[26] Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry ((Proc. Conf. Purdue Univ., 1963)), Harper & Row, 1965, pp. 93-110 | MR | Zbl
[27] Algorithm for determining the type of a singular fibre in an elliptic pencil, Modular functions of one variable IV ((Antwerpen 1972), SLN), Volume 476, 1975, pp. 33-52 | MR | Zbl
- A remarkable class of elliptic surfaces of amplitude 1 in weighted projective spaces, Science China Mathematics (2024) | DOI:10.1007/s11425-024-2319-5
- 24 Rational curves on K3 surfaces, Communications in Contemporary Mathematics, Volume 25 (2023) no. 06 | DOI:10.1142/s0219199722500080
- Singularities of normal quartic surfaces, III : char = 2, nonsupersingular, Tunisian Journal of Mathematics, Volume 5 (2023) no. 3, p. 457 | DOI:10.2140/tunis.2023.5.457
- Log smooth curves over discrete valuation rings, manuscripta mathematica, Volume 167 (2022) no. 1-2, p. 197 | DOI:10.1007/s00229-020-01268-1
- Twelve Rational curves on Enriques surfaces, Research in the Mathematical Sciences, Volume 8 (2021) no. 2 | DOI:10.1007/s40687-021-00262-7
- AT MOST 64 LINES ON SMOOTH QUARTIC SURFACES (CHARACTERISTIC 2), Nagoya Mathematical Journal, Volume 232 (2018), p. 76 | DOI:10.1017/nmj.2017.21
- 112 LINES ON SMOOTH QUARTIC SURFACES (CHARACTERISTIC 3): Table 1, The Quarterly Journal of Mathematics, Volume 66 (2015) no. 3, p. 941 | DOI:10.1093/qmath/hav018
- A note on the supersingular K3 surface of Artin invariant 1, Journal of Pure and Applied Algebra, Volume 216 (2012) no. 6, p. 1438 | DOI:10.1016/j.jpaa.2011.10.036
Cité par 8 documents. Sources : Crossref