On the uniqueness of elliptic K3 surfaces with maximal singular fibre
[Sur l’unicité des surfaces elliptiques de type K3 ayant une fibre singulière maximale]
Annales de l'Institut Fourier, Tome 63 (2013) no. 2, pp. 689-713.

Nous déterminons des équations explicites pour les surfaces elliptiques de type K3 qui ont une section et une fibre singulière maximale. Si la caractéristique du corps sous-jacent est différente de 2, pour chacun des deux types de fibre maximale, I19 et I14*, la surface est unique. En caractéristique 2 les fibres maximales sont de type I18 ou I13*, et il y a deux, respectivement une, familles 1-dimensionales de telles surfaces.

We explicitly determine the elliptic K3 surfaces with section and maximal singular fibre. If the characteristic of the ground field is different from 2, for each of the two possible maximal fibre types, I19 and I14*, the surface is unique. In characteristic 2 the maximal fibre types are I18 and I13*, and there exist two (resp. one) one-parameter families of such surfaces.

DOI : 10.5802/aif.2773
Classification : 14J27, 14J28, 11G05
Keywords: elliptic surface, K3 surface, maximal singular fibre, wild ramification.
Mots-clés : surface elliptique, surface de type K3, fibre singulière maximale, ramification sauvage

Schütt, Matthias 1 ; Schweizer, Andreas 2

1 Institut für Algebraische Geometrie Leibniz Universität Hannover Welfengarten 1 30167 Hannover Germany
2 Department of Mathematics Korea Advanced Institute of Science and Technology (KAIST) Daejeon 305-701 South Korea
@article{AIF_2013__63_2_689_0,
     author = {Sch\"utt, Matthias and Schweizer, Andreas},
     title = {On the uniqueness of elliptic {K3} surfaces with maximal singular fibre},
     journal = {Annales de l'Institut Fourier},
     pages = {689--713},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {63},
     number = {2},
     year = {2013},
     doi = {10.5802/aif.2773},
     mrnumber = {3112845},
     zbl = {1273.14078},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2773/}
}
TY  - JOUR
AU  - Schütt, Matthias
AU  - Schweizer, Andreas
TI  - On the uniqueness of elliptic K3 surfaces with maximal singular fibre
JO  - Annales de l'Institut Fourier
PY  - 2013
SP  - 689
EP  - 713
VL  - 63
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2773/
DO  - 10.5802/aif.2773
LA  - en
ID  - AIF_2013__63_2_689_0
ER  - 
%0 Journal Article
%A Schütt, Matthias
%A Schweizer, Andreas
%T On the uniqueness of elliptic K3 surfaces with maximal singular fibre
%J Annales de l'Institut Fourier
%D 2013
%P 689-713
%V 63
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2773/
%R 10.5802/aif.2773
%G en
%F AIF_2013__63_2_689_0
Schütt, Matthias; Schweizer, Andreas. On the uniqueness of elliptic K3 surfaces with maximal singular fibre. Annales de l'Institut Fourier, Tome 63 (2013) no. 2, pp. 689-713. doi : 10.5802/aif.2773. https://aif.centre-mersenne.org/articles/10.5802/aif.2773/

[1] Artin, M. Supersingular K3 surfaces, Ann. Sci. École Norm. Sup. (4), Volume 7 (1974), pp. 543-568 | Numdam | MR | Zbl

[2] Artin, M.; Swinnerton-Dyer, P. The Shafarevich-Tate conjecture for pencils of elliptic curves on K3 surfaces, Invent. Math., Volume 20 (1973), pp. 249-266 | DOI | MR | Zbl

[3] Beukers, F.; Montanus, H. Explicit calculation of elliptic fibrations of K3-surfaces and their Belyi-maps, Number theory and polynomials (London Math. Soc. Lecture Note Ser.), Volume 352, Cambridge Univ. Press, Cambridge, 2008, pp. 33-51 | MR

[4] Cossec, F. R.; Dolgachev, I. V. Enriques surfaces, I. Progress in Math., 76, Birkhäuser, 1989 | MR | Zbl

[5] Dolgachev, I.; Kondō, S. A supersingular K3 surface in characteristic 2 and the Leech lattice, Int. Math. Res. Not. (2003) no. 1, pp. 1-23 | DOI | MR | Zbl

[6] Elkies, N. D. Mordell-Weil lattices in characteristic 2. I. Construction and first properties, Int. Math. Res. Not. (1994) no. 8, pp. 343-361 | DOI | MR | Zbl

[7] Gekeler, E.-U.; Matzat, B. H.; Greuel, G.-M.; Hiß, G. Local and global ramification properties of elliptic curves in characteristics two and three, Algorithmic Algebra and Number Theory, Berlin-Heidelberg-New York: Springer, 1998, pp. 49-64 | MR | Zbl

[8] Hall Jr., M. The Diophantine equation x3-y2=k (Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969)), pp. 173-198

[9] Kodaira, K. On compact analytic surfaces II, III, Ann. of Math. (2), Volume 77 (1963), pp. 563-626 ibid. 78 (1963), 1–40 | DOI | MR | Zbl

[10] Livné, R. Motivic Orthogonal Two-dimensional Representations of Gal(¯/), Israel J. Math., Volume 92 (1995), pp. 149-156 | DOI | MR | Zbl

[11] Miranda, R.; Persson, U. Configurations of In Fibers on Elliptic K3 surfaces, Math. Z., Volume 201 (1989), pp. 339-361 | DOI | MR | Zbl

[12] Miyamoto, R.; Top, J. Reduction of Elliptic Curves in Equal Characteristic, Canad. Math. Bull., Volume 48 (2005), pp. 428-444 | DOI | MR | Zbl

[13] Pesenti, J.; Szpiro, L. Inégalité du discriminant pour les pinceaux elliptiques à réductions quelconques, Compositio Math., Volume 120 (2000) no. 1, pp. 83-117 | DOI | MR | Zbl

[14] Pjateckiĭ-Šapiro, I. I.; Šafarevič, I. R A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izv., Volume 5 (1972) no. 3, pp. 547-588 | DOI | Zbl

[15] Schweizer, A. Extremal elliptic surfaces in characteristic 2 and 3, Manuscripta Math., Volume 102 (2000), pp. 505-521 | DOI | MR | Zbl

[16] Schütt, M. The maximal singular fibres of elliptic K3 surfaces, Arch. Math. (Basel), Volume 87 (2006) no. 4, pp. 309-319 | DOI | MR | Zbl

[17] Schütt, M. CM newforms with rational coefficients, Ramanujan J., Volume 19 (2009), pp. 187-205 | DOI | MR | Zbl

[18] Schütt, M.; Schweizer, A. Davenport-Stothers inequalities and elliptic surfaces in positive characteristic, Quarterly J. Math., Volume 59 (2008), pp. 499-522 | DOI | MR | Zbl

[19] Schütt, M.; Top, J. Arithmetic of the [19,1,1,1,1,1] fibration, Comm. Math. Univ. St. Pauli, Volume 55 (2006) no. 1, pp. 9-16 | MR | Zbl

[20] Shioda, T. On the Mordell-Weil lattices, Comm. Math. Univ. St. Pauli, Volume 39 (1990), pp. 211-240 | MR | Zbl

[21] Shioda, T. The elliptic K3 surfaces with a maximal singular fibre, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 461-466 | DOI | MR | Zbl

[22] Shioda, T. Elliptic surfaces and Davenport-Stothers triples, Comment. Math. Univ. St. Pauli, Volume 54 (2005), pp. 49-68 | MR | Zbl

[23] Shioda, T.; Inose, H. On Singular K3 Surfaces, Baily W. L. Jr., Shioda, T. (eds.) (Complex analysis and algebraic geometry), Iwanami Shoten, Tokyo, 1977, pp. 119-136 | MR | Zbl

[24] Silverman, J. H. Advanced Topics in the Arithmetic of Elliptic Curves, Springer GTM, Berlin-Heidelberg-New York, 1994 | MR | Zbl

[25] Stothers, W. W. Polynomial identities and Hauptmoduln, Quart. J. Math. Oxford (2), Volume 32 (1981), pp. 349-370 | DOI | MR | Zbl

[26] Tate, J. Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry ((Proc. Conf. Purdue Univ., 1963)), Harper & Row, 1965, pp. 93-110 | MR | Zbl

[27] Tate, J. Algorithm for determining the type of a singular fibre in an elliptic pencil, Modular functions of one variable IV ((Antwerpen 1972), SLN), Volume 476, 1975, pp. 33-52 | MR | Zbl

  • Pearlstein, Gregory; Peters, Chris; Nijgh, Wim A remarkable class of elliptic surfaces of amplitude 1 in weighted projective spaces, Science China Mathematics (2024) | DOI:10.1007/s11425-024-2319-5
  • Rams, Sławomir; Schütt, Matthias 24 Rational curves on K3 surfaces, Communications in Contemporary Mathematics, Volume 25 (2023) no. 06 | DOI:10.1142/s0219199722500080
  • Catanese, Fabrizio; Schütt, Matthias Singularities of normal quartic surfaces, III : char = 2, nonsupersingular, Tunisian Journal of Mathematics, Volume 5 (2023) no. 3, p. 457 | DOI:10.2140/tunis.2023.5.457
  • Lodh, Rémi Log smooth curves over discrete valuation rings, manuscripta mathematica, Volume 167 (2022) no. 1-2, p. 197 | DOI:10.1007/s00229-020-01268-1
  • Rams, Sławomir; Schütt, Matthias Twelve Rational curves on Enriques surfaces, Research in the Mathematical Sciences, Volume 8 (2021) no. 2 | DOI:10.1007/s40687-021-00262-7
  • RAMS, SŁAWOMIR; SCHÜTT, MATTHIAS AT MOST 64 LINES ON SMOOTH QUARTIC SURFACES (CHARACTERISTIC 2), Nagoya Mathematical Journal, Volume 232 (2018), p. 76 | DOI:10.1017/nmj.2017.21
  • Rams, Sławomir; Schütt, Matthias 112 LINES ON SMOOTH QUARTIC SURFACES (CHARACTERISTIC 3): Table 1, The Quarterly Journal of Mathematics, Volume 66 (2015) no. 3, p. 941 | DOI:10.1093/qmath/hav018
  • Schütt, Matthias A note on the supersingular K3 surface of Artin invariant 1, Journal of Pure and Applied Algebra, Volume 216 (2012) no. 6, p. 1438 | DOI:10.1016/j.jpaa.2011.10.036

Cité par 8 documents. Sources : Crossref