Nous présentons une conjecture développée par Coates-Iritani-Tseng et Ruan, qui relie la cohomologie quantique d’un orbifold de Gorenstein à la cohomologie quantique d’une résolution crépante de . Nous explorons quelque conséquences de cette conjecture et montrons qu’elle implique des versions de la Conjecture de la Résolution Crépante Cohmologique et des Conjectures de la Résolution Crépante de Ruan et Bryan-Graber. Nous donnons aussi une version « quantisée » de la conjecture, qui détermine les invariants de Gromov-Witten de genre supérieur de à partir de ceux de .
We give an expository account of a conjecture, developed by Coates–Iritani–Tseng and Ruan, which relates the quantum cohomology of a Gorenstein orbifold to the quantum cohomology of a crepant resolution of . We explore some consequences of this conjecture, showing that it implies versions of both the Cohomological Crepant Resolution Conjecture and of the Crepant Resolution Conjectures of Ruan and Bryan–Graber. We also give a ‘quantized’ version of the conjecture, which determines higher-genus Gromov–Witten invariants of from those of .
Keywords: Quantum cohomology, orbifold, crepant resolution, Gromov–Witten invariants.
Mot clés : Cohomologie quantique, orbifold, résolution crépante, les invariants de Gromov-Witten.
Coates, Tom 1 ; Ruan, Yongbin 2
@article{AIF_2013__63_2_431_0, author = {Coates, Tom and Ruan, Yongbin}, title = {Quantum {Cohomology} and {Crepant} {Resolutions:} {A} {Conjecture}}, journal = {Annales de l'Institut Fourier}, pages = {431--478}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {2}, year = {2013}, doi = {10.5802/aif.2766}, mrnumber = {3112518}, zbl = {1275.53083}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2766/} }
TY - JOUR AU - Coates, Tom AU - Ruan, Yongbin TI - Quantum Cohomology and Crepant Resolutions: A Conjecture JO - Annales de l'Institut Fourier PY - 2013 SP - 431 EP - 478 VL - 63 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2766/ DO - 10.5802/aif.2766 LA - en ID - AIF_2013__63_2_431_0 ER -
%0 Journal Article %A Coates, Tom %A Ruan, Yongbin %T Quantum Cohomology and Crepant Resolutions: A Conjecture %J Annales de l'Institut Fourier %D 2013 %P 431-478 %V 63 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2766/ %R 10.5802/aif.2766 %G en %F AIF_2013__63_2_431_0
Coates, Tom; Ruan, Yongbin. Quantum Cohomology and Crepant Resolutions: A Conjecture. Annales de l'Institut Fourier, Tome 63 (2013) no. 2, pp. 431-478. doi : 10.5802/aif.2766. https://aif.centre-mersenne.org/articles/10.5802/aif.2766/
[1] Algebraic orbifold quantum products, Orbifolds in mathematics and physics (Contemp. Math.), Volume 310 (2002), pp. 1-24 | MR | Zbl
[2] Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math., Volume 130 (2008), pp. 1337-1398 | DOI | MR | Zbl
[3] Topological strings and (almost) modular forms, Comm. Math. Phys., Volume 277 (2008), pp. 771-819 | DOI | MR | Zbl
[4] Calabi-Yau moduli space, mirror manifolds and spacetime topology change in string theory, Nuclear Phys. B, Volume 416 (1994), pp. 414-480 | DOI | MR | Zbl
[5] Quantum periods. I. Semi-infinite variations of Hodge structures, Internat. Math. Res. Notices (2001), pp. 1243-1264 | DOI | MR | Zbl
[6] Faisceaux pervers, Analysis and topology on singular spaces, I (Astérisque), Volume 100 (1982), pp. 5-171 | MR | Zbl
[7] The crepant resolution conjecture, Algebraic geometry—Seattle 2005. Part 1 (Proc. Sympos. Pure Math.), Volume 80 (2009), pp. 23-42 | MR | Zbl
[8] The orbifold quantum cohomology of and Hurwitz-Hodge integrals, J. Algebraic Geom., Volume 17 (2008), pp. 1-28 | DOI | MR | Zbl
[9] Orbifold Gromov–Witten theory, Orbifolds in mathematics and physics (Contemp. Math.), Volume 310 (2002), pp. 25-85 | MR | Zbl
[10] A new cohomology theory of orbifold, Comm. Math. Phys., Volume 248 (2004), pp. 1-31 | DOI | MR | Zbl
[11] Givental’s Lagrangian cone and -equivariant Gromov-Witten theory, Math. Res. Lett., Volume 15 (2008), pp. 15-31 | DOI | MR | Zbl
[12] On the crepant resolution conjecture in the local case, Comm. Math. Phys., Volume 287 (2009), pp. 1071-1108 | DOI | MR | Zbl
[13] Quantum Riemann-Roch, Lefschetz and Serre, Ann. of Math. (2), Volume 165 (2007), pp. 15-53 | DOI | MR | Zbl
[14] Wall-crossings in toric Gromov-Witten theory. I. Crepant examples, Geom. Topol., Volume 13 (2009), pp. 2675-2744 | DOI | MR | Zbl
[15] The quantum orbifold cohomology of weighted projective spaces, Acta Math., Volume 202 (2009), pp. 139-193 | DOI | MR | Zbl
[16] Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs, 68, American Mathematical Society, Providence, RI, 1999 | MR | Zbl
[17] Geometry of D topological field theories, Integrable systems and quantum groups (Lecture Notes in Math.), Volume 1620 (1996), pp. 120-348 | MR | Zbl
[18] Tautological relations and the r-spin Witten conjecture (preprint, available arXiv:math/0612510) | Numdam | MR
[19] Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995 (Proc. Sympos. Pure Math.), Volume 62 (1997), pp. 45-96 | MR | Zbl
[20] Homological geometry. I. Projective hypersurfaces, Selecta Math. (N.S.), Volume 1 (1995), pp. 325-345 | DOI | MR | Zbl
[21] Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J., Volume 1 (2001), p. 551-568, 645 | MR | Zbl
[22] Symplectic geometry of Frobenius structures, Frobenius manifolds (Aspects Math., E36) (2004), pp. 91-112 | MR | Zbl
[23] Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Mathematics, 151, Cambridge University Press, 2002 | MR | Zbl
[24] Weak Frobenius manifolds, Internat. Math. Res. Notices (1999), pp. 277-286 | DOI | Zbl
[25] Quotients by groupoids, Ann. of Math. (2), Volume 145 (1997), pp. 193-213 | DOI | MR | Zbl
[26] Invariance of tautological equations. I. Conjectures and applications, J. Eur. Math. Soc. (JEMS), Volume 10 (2008), pp. 399-413 | DOI | MR | Zbl
[27] Invariance of tautological equations. II. Gromov-Witten theory, J. Amer. Math. Soc., Volume 22 (2009), pp. 331-352 | DOI | MR | Zbl
[28] Frobenius manifolds, quantum cohomology, and moduli spaces, American Mathematical Society Colloquium Publications, 47, American Mathematical Society, Providence, RI, 1999 | MR | Zbl
[29] The equivariant Gromov-Witten theory of and integrable hierarchies, Int. Math. Res. Not. IMRN (2008) (Art. ID rnn 073, 21) | MR | Zbl
[30] Gerbes and twisted orbifold quantum cohomology, Sci. China Ser. A, Volume 51 (2008), pp. 995-1016 | DOI | MR | Zbl
[31] Chen-Ruan cohomology of singularities, Internat. J. Math., Volume 18 (2007), pp. 1009-1059 | DOI | MR | Zbl
[32] The cohomology ring of crepant resolutions of orbifolds, Gromov-Witten theory of spin curves and orbifolds (Contemp. Math.), Volume 403 (2006), pp. 117-126 | MR | Zbl
[33]
, unpublished[34] Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol., Volume 14 (2010), pp. 1-81 | DOI | MR | Zbl
[35] Quantum Background Independence In String Theory (arXiv:hep-th/9306122)
Cité par Sources :