Cet article établit de nouveaux ponts entre les fonctions zeta en théorie des nombres et l’analyse harmonique moderne, c’est-à-dire entre la classe des fonctions de la variable complexe, qui contient les fonctions zeta des schémas arithmétiques et est stable par produit et quotient, et la classe des fonctions moyennes périodiques sur pluieurs espaces de fonctions de la droite réelle. En particulier, il est démontré que le prolongement méromorphe et l’équation fonctionnelle de la fonction zeta d’un schéma arithmétique correspond à la moyenne périodicité d’une fonction explicitement définie et associée à cette fonction zeta. Le cas des courbes elliptiques sur des corps de nombres et leurs modèles réguliers est traité en détails, et de nombreux exemples supplémentaires sont inclus.
This paper establishes new bridges between zeta functions in number theory and modern harmonic analysis, namely between the class of complex functions, which contains the zeta functions of arithmetic schemes and closed with respect to product and quotient, and the class of mean-periodic functions in several spaces of functions on the real line. In particular, the meromorphic continuation and functional equation of the zeta function of an arithmetic scheme with its expected analytic shape is shown to correspond to mean-periodicity of a certain explicitly defined function associated to the zeta function. The case of elliptic curves over number fields and their regular models is treated in more details, and many other examples are included as well.
Mots clés : Zeta functions of elliptic curves over number fields, zeta functions of arithmetic schemes, mean-periodicity, boundary terms of zeta integrals, higher adelic analysis and geometry
Fesenko, Ivan 1 ; Ricotta, Guillaume 2, 3 ; Suzuki, Masatoshi 4
@article{AIF_2012__62_5_1819_0, author = {Fesenko, Ivan and Ricotta, Guillaume and Suzuki, Masatoshi}, title = {Mean-periodicity and zeta functions}, journal = {Annales de l'Institut Fourier}, pages = {1819--1887}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {5}, year = {2012}, doi = {10.5802/aif.2737}, mrnumber = {3025155}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2737/} }
TY - JOUR AU - Fesenko, Ivan AU - Ricotta, Guillaume AU - Suzuki, Masatoshi TI - Mean-periodicity and zeta functions JO - Annales de l'Institut Fourier PY - 2012 SP - 1819 EP - 1887 VL - 62 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2737/ DO - 10.5802/aif.2737 LA - en ID - AIF_2012__62_5_1819_0 ER -
%0 Journal Article %A Fesenko, Ivan %A Ricotta, Guillaume %A Suzuki, Masatoshi %T Mean-periodicity and zeta functions %J Annales de l'Institut Fourier %D 2012 %P 1819-1887 %V 62 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2737/ %R 10.5802/aif.2737 %G en %F AIF_2012__62_5_1819_0
Fesenko, Ivan; Ricotta, Guillaume; Suzuki, Masatoshi. Mean-periodicity and zeta functions. Annales de l'Institut Fourier, Tome 62 (2012) no. 5, pp. 1819-1887. doi : 10.5802/aif.2737. https://aif.centre-mersenne.org/articles/10.5802/aif.2737/
[1] Complex analysis and special topics in harmonic analysis, Springer-Verlag, New York, 1995 | MR | Zbl
[2] Dirichlet series and convolution equations, Publ. Res. Inst. Math. Sci., Volume 24 (1988) no. 5, pp. 783-810 | DOI | MR | Zbl
[3] Mean-periodic functions, Internat. J. Math. Math. Sci., Volume 3 (1980) no. 2, pp. 199-235 | DOI | MR | Zbl
[4] De Rham cohomology and conductors of curves, Duke Math. J., Volume 54 (1987) no. 2, pp. 295-308 | DOI | MR | Zbl
[5] Mathemagics (a tribute to L. Euler and R. Feynman), Noise, oscillators and algebraic randomness (Chapelle des Bois, 1999) (Lecture Notes in Phys.), Volume 550, Springer, Berlin, 2000, pp. 6-67 | MR | Zbl
[6] On Epstein’s zeta function. I, Proc. Nat. Acad. Sci. U. S. A., Volume 35 (1949), pp. 371-374 | DOI | MR | Zbl
[7] Trace formula in noncommutative geometry and the zeros of the Riemann zeta function, Selecta Math. (N.S.) (1999) no. 5, pp. 29-106 | MR | Zbl
[8] The Riemann hypothesis, Notices Amer. Math. Soc., Volume 50 (2003) no. 3, pp. 341-353 | MR | Zbl
[9] On the zeros of certain Dirichlet series I, J. London Math. Soc. (1936) no. 11, pp. 181-185 | DOI | MR | Zbl
[10] On the zeros of certain Dirichlet series II, J. London Math. Soc. (1936) no. 11, pp. 307-312 | DOI | Zbl
[11] Les fonctions moyennes-périodiques, Journal de Math. Pures et Appl., Volume 14 (1935), pp. 403-453 | Zbl
[12] Analysis on arithmetic schemes. I, Doc. Math. (2003) no. Extra Vol., pp. 261-284 (Kazuya Kato’s fiftieth birthday) | MR | Zbl
[13] Adelic approach to the zeta function of arithmetic schemes in dimension two, Mosc. Math. J., Volume 8 (2008) no. 2, p. 273-317, 399–400 | MR | Zbl
[14] Analysis on arithmetic schemes. II, J. K-Theory, Volume 5 (2010) no. 3, pp. 437-557 | DOI | MR | Zbl
[15] Several complex variables. V, Encyclopaedia of Mathematical Sciences, 54, Springer-Verlag, Berlin, 1993 Complex analysis in partial differential equations and mathematical physics, A translation of Current problems in mathematics. Fundamental directions. Vol. 54 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989 | MR
[16] On the ideal structure of some algebras of analytic functions, Pacific J. Math., Volume 35 (1970), pp. 625-634 | DOI | MR | Zbl
[17] On negative moments of the Riemann zeta-function, Mathematika, Volume 36 (1989) no. 1, pp. 71-88 | DOI | MR | Zbl
[18] The Selberg trace formula for . Vol. I, Springer-Verlag, Berlin, 1976 (Lecture Notes in Mathematics, Vol. 548) | MR | Zbl
[19] On the distribution of , Number theory, trace formulas and discrete groups (Oslo, 1987), Academic Press, Boston, MA, 1989, pp. 343-370 | MR | Zbl
[20] Analytic number theory, American Mathematical Society Colloquium Publications, 53, American Mathematical Society, Providence, RI, 2004 | MR | Zbl
[21] Lectures on mean periodic functions, Tata Inst. Fundamental Res., Bombay, 1959 | Zbl
[22] The large sieve, monodromy, and zeta functions of algebraic curves. II. Independence of the zeros, Int. Math. Res. Not. IMRN (2008), pp. Art. ID rnn 091, 57 | MR | Zbl
[23] Gamma factors and Plancherel measures, Proc. Japan Acad. Ser. A Math. Sci., Volume 68 (1992) no. 9, pp. 256-260 | DOI | MR | Zbl
[24] Translation invariant spaces, Acta Math., Volume 101 (1959), pp. 163-178 | DOI | MR | Zbl
[25] Lectures on entire functions, Translations of Mathematical Monographs, 150, American Mathematical Society, Providence, RI, 1996 (In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko, Translated from the Russian manuscript by Tkachenko) | MR | Zbl
[26] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics,, 6, Oxford University Press, Oxford, 2006 (Translated from the French by Reinie Erné) | MR | Zbl
[27] A spectral interpretation for the zeros of the Riemann zeta function, Mathematisches Institut, Georg-August-Universität Göttingen: Seminars Winter Term 2004/2005, Universitätsdrucke Göttingen, Göttingen, 2005, pp. 117-137 | MR | Zbl
[28] Algebraic numbers and harmonic analysis, North-Holland Publishing Co., Amsterdam, 1972 (North-Holland Mathematical Library, Vol. 2) | MR | Zbl
[29] Analytic number theory and families of automorphic -functions, Automorphic forms and applications (IAS/Park City Math. Ser.), Volume 12, Amer. Math. Soc., Providence, RI, 2007, pp. 181-295 | MR | Zbl
[30] Invariant subspaces in the theory of operators and theory of functions, Journal of Mathematical Sciences, Volume 5 (1976) no. 2, pp. 129-249 | DOI | Zbl
[31] Elementary description of the methods of localizing ideals, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 170 (1989) no. Issled. Linein. Oper. Teorii Funktsii. 17, p. 207-232, 324–325 | MR | Zbl
[32] Problems and theorems in analysis. I, Classics in Mathematics, Springer-Verlag, Berlin, 1998 (Series, integral calculus, theory of functions, Translated from the German by Dorothee Aeppli, Reprint of the 1978 English translation) | MR
[33] Class field theory in characteristic , its origin and development, Class field theory—its centenary and prospect (Tokyo, 1998) (Adv. Stud. Pure Math.), Volume 30, Math. Soc. Japan, Tokyo, 2001, pp. 549-631 | MR | Zbl
[34] Chebyshev’s bias, Experiment. Math. 3 (1994) no. 3, pp. 173-197 | DOI | MR | Zbl
[35] Théorie générale des fonctions moyenne-périodiques, Ann. of Math. (2), Volume 48 (1947), pp. 857-929 | DOI | MR | Zbl
[36] Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.), Volume 20 (1956), pp. 47-87 | MR | Zbl
[37] Zeta and functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper & Row, New York, 1965, pp. 82-92 | MR | Zbl
[38] Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), Œuvres. Vol. II, Springer-Verlag, Berlin, 1986 (1960–1971) | Zbl
[39] On zeroes of automorphic -functions, Dynamical, spectral, and arithmetic zeta functions (San Antonio, TX, 1999) (Contemp. Math.), Volume 290, Amer. Math. Soc., Providence, RI, 2001, pp. 167-179 | MR | Zbl
[40] On the zeros of Epstein’s zeta function, Mathematika, Volume 14 (1967), pp. 47-55 | DOI | MR | Zbl
[41] Two dimensional adelic analysis and cuspidal automorphic representations of (prepublication, February 2008 to be published in the Proceedings of the workshop “Multiple Dirichlet Series and Applications to Automorphic Forms”)
[42] Positivity of certain functions associated with analysis on elliptic surface, J. Number Theory, Volume 131 (2011), pp. 1770-1796 | DOI | MR | Zbl
[43] Fourier analysis in number fields, and Hecke’s zeta-functions, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 305-347 | MR
[44] The theory of the Riemann zeta-function, The Clarendon Press Oxford University Press, New York, 1986 (Edited and with a preface by D. R. Heath-Brown) | MR | Zbl
[45] The Laplace Transform, Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, N. J., 1941 | MR | Zbl
[46] Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2), Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl
[47] Eisenstein series and the Riemann zeta function, Automorphic forms, representation theory and arithmetic (Bombay, 1979) (Tata Inst. Fund. Res. Studies in Math.), Volume 10, Tata Inst. Fundamental Res., Bombay, 1981, pp. 275-301 | MR | Zbl
Cité par Sources :