On étudie la bornitude () des opérateurs de la forme pour un système commutatif d’opérateurs différentiels autoadjoints invariants à gauche sur un groupe de Lie à croissance polynomiale, qui engendrent une algèbre contenant un opérateur sous-coercif pondéré. En particulier, quand est un groupe homogène et sont homogènes, on prouve des analogues des theorèmes de multiplicateurs de Mihlin-Hörmander et Marcinkiewicz.
We study the problem of -boundedness () of operators of the form for a commuting system of self-adjoint left-invariant differential operators on a Lie group of polynomial growth, which generate an algebra containing a weighted subcoercive operator. In particular, when is a homogeneous group and are homogeneous, we prove analogues of the Mihlin-Hörmander and Marcinkiewicz multiplier theorems.
Keywords: spectral multipliers, joint functional calculus, differential operators, Lie groups, polynomial growth, singular integral operators
Mot clés : multiplicateurs spectraux, calcul fonctionnel conjoint, opérateurs différentiels, groupes de Lie, croissance polynomiale, opérateurs intégraux singuliers
Martini, Alessio 1
@article{AIF_2012__62_4_1215_0, author = {Martini, Alessio}, title = {Analysis of joint spectral multipliers on {Lie} groups of polynomial growth}, journal = {Annales de l'Institut Fourier}, pages = {1215--1263}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {4}, year = {2012}, doi = {10.5802/aif.2721}, mrnumber = {3025742}, zbl = {1255.43003}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2721/} }
TY - JOUR AU - Martini, Alessio TI - Analysis of joint spectral multipliers on Lie groups of polynomial growth JO - Annales de l'Institut Fourier PY - 2012 SP - 1215 EP - 1263 VL - 62 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2721/ DO - 10.5802/aif.2721 LA - en ID - AIF_2012__62_4_1215_0 ER -
%0 Journal Article %A Martini, Alessio %T Analysis of joint spectral multipliers on Lie groups of polynomial growth %J Annales de l'Institut Fourier %D 2012 %P 1215-1263 %V 62 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2721/ %R 10.5802/aif.2721 %G en %F AIF_2012__62_4_1215_0
Martini, Alessio. Analysis of joint spectral multipliers on Lie groups of polynomial growth. Annales de l'Institut Fourier, Tome 62 (2012) no. 4, pp. 1215-1263. doi : 10.5802/aif.2721. https://aif.centre-mersenne.org/articles/10.5802/aif.2721/
[1] Spectral multipliers on Lie groups of polynomial growth, Proc. Amer. Math. Soc., Volume 120 (1994) no. 3, pp. 973-979 | DOI | MR | Zbl
[2] Interpolation spaces. An introduction, Springer-Verlag, Berlin, 1976 (Grundlehren der Mathematischen Wissenschaften, No. 223) | MR | Zbl
[3] Transference couples and their applications to convolution operators and maximal operators, Interaction between functional analysis, harmonic analysis, and probability (Columbia, MO, 1994) (Lecture Notes in Pure and Appl. Math.), Volume 175, Dekker, New York, 1996, pp. 69-84 | MR | Zbl
[4] bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc., Volume 328 (1991) no. 1, pp. 73-81 | DOI | MR | Zbl
[5] The strong maximal function on a nilpotent group, Trans. Amer. Math. Soc., Volume 331 (1992) no. 1, pp. 1-13 | DOI | MR | Zbl
[6] Transference methods in analysis, American Mathematical Society, Providence, R.I., 1976 (Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 31) | MR | Zbl
[7] Herz’s “principe de majoration” and the Kunze-Stein phenomenon, Harmonic analysis and number theory (Montreal, PQ, 1996) (CMS Conf. Proc.), Volume 21, Amer. Math. Soc., Providence, RI, 1997, pp. 73-88 | MR | Zbl
[8] A spectral multiplier theorem for a sublaplacian on , Math. Z., Volume 238 (2001) no. 1, pp. 1-36 | DOI | MR | Zbl
[9] Plancherel-type estimates and sharp spectral multipliers, J. Funct. Anal., Volume 196 (2002) no. 2, pp. 443-485 | DOI | MR | Zbl
[10] Weighted subcoercive operators on Lie groups, J. Funct. Anal., Volume 157 (1998) no. 1, pp. 88-163 | DOI | MR | Zbl
[11] Gelfand transforms of -invariant Schwartz functions on the free group , Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 6, pp. 2143-2168 | DOI | Numdam | MR | Zbl
[12] Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton University Press, Princeton, N.J., 1982 | MR | Zbl
[13] Marcinkiewicz multipliers on the Heisenberg group, Princeton University (1997) (Ph. D. Thesis) | MR
[14] Convolution kernels of -fold Marcinkiewicz multipliers on the Heisenberg group, Bull. Austral. Math. Soc., Volume 64 (2001) no. 3, pp. 353-376 | DOI | MR | Zbl
[15] An -fold Marcinkiewicz multiplier theorem on the Heisenberg group, Bull. Austral. Math. Soc., Volume 63 (2001) no. 1, pp. 35-58 | DOI | MR | Zbl
[16] Classical Fourier analysis, Graduate Texts in Mathematics, 249, Springer, New York, 2008 | MR | Zbl
[17] Multiplier theorem on generalized Heisenberg groups, Colloq. Math., Volume 65 (1993) no. 2, pp. 231-239 | MR | Zbl
[18] Functional calculus for slowly decaying kernels, 1995 (Preprint. Available on the web http://www.math.uni.wroc.pl/~hebisch/)
[19] A smooth subadditive homogeneous norm on a homogeneous group, Studia Math., Volume 96 (1990) no. 3, pp. 231-236 | MR | Zbl
[20] Multiplier theorem on generalized Heisenberg groups. II, Colloq. Math., Volume 69 (1995) no. 1, pp. 29-36 | MR | Zbl
[21] Conditions nécessaires d’hypoanalyticité pour des opérateurs invariants à gauche homogènes sur un groupe nilpotent gradué, J. Differential Equations, Volume 44 (1982) no. 3, pp. 460-481 | DOI | MR | Zbl
[22] Caracterisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué, Comm. Partial Differential Equations, Volume 4 (1979) no. 8, pp. 899-958 | DOI | MR | Zbl
[23] A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math., Volume 78 (1984) no. 3, pp. 253-266 | MR | Zbl
[24] Dual topology of diamond groups, J. Reine Angew. Math., Volume 467 (1995), pp. 67-87 | DOI | MR | Zbl
[25] Algebras of differential operators on Lie groups and spectral multipliers, Scuola Normale Superiore (2010) (Ph. D. Thesis)
[26] Spectral theory for commutative algebras of differential operators on Lie groups, J. Funct. Anal., Volume 260 (2011) no. 9, pp. 2767-2814 | DOI | MR | Zbl
[27] Zonal multipliers on the Heisenberg group, Pacific J. Math., Volume 95 (1981) no. 1, pp. 143-159 http://projecteuclid.org/getRecord?id=euclid.pjm/1102735536 | DOI | MR | Zbl
[28] Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana, Volume 6 (1990) no. 3-4, pp. 141-154 | DOI | MR | Zbl
[29] Hypoellipticité analytique sur des groupes nilpotents de rang , Duke Math. J., Volume 47 (1980) no. 1, pp. 195-221 http://projecteuclid.org/getRecord?id=euclid.dmj/1077313871 | DOI | MR | Zbl
[30] On spectral multipliers for Heisenberg and related groups, J. Math. Pures Appl. (9), Volume 73 (1994) no. 4, pp. 413-440 | MR | Zbl
[31] Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. I, Invent. Math., Volume 119 (1995) no. 2, pp. 199-233 | DOI | MR | Zbl
[32] Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. II, Math. Z., Volume 221 (1996) no. 2, pp. 267-291 | DOI | MR | Zbl
[33] Singular spherical maximal operators on a class of two step nilpotent Lie groups, Israel J. Math., Volume 141 (2004), pp. 315-340 | DOI | MR | Zbl
[34] Unitary representations and coadjoint orbits of low-dimensional nilpotent Lie groups, Queen’s Papers in Pure and Applied Mathematics, 63, Queen’s University, Kingston, ON, 1983 | MR | Zbl
[35] Hypoellipticity on the Heisenberg group-representation-theoretic criteria, Trans. Amer. Math. Soc., Volume 240 (1978), pp. 1-52 | DOI | MR | Zbl
[36] Real and complex analysis, McGraw-Hill Book Co., New York, 1974 (McGraw-Hill Series in Higher Mathematics) | MR | Zbl
[37] Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, de Gruyter Series in Nonlinear Analysis and Applications, 3, Walter de Gruyter & Co., Berlin, 1996 | MR | Zbl
[38] Recent developments in the theory of function spaces with dominating mixed smoothness, Nonlinear Analysis, Function Spaces and Applications. Proceedings of the Spring School held in Prague, May 30-June 6, 2006, Volume 8, Czech Academy of Sciences, Mathematical Institute, Praha, 2007, pp. 145-204 | MR
[39] Spaces of functions of mixed smoothness and approximation from hyperbolic crosses, J. Approx. Theory, Volume 128 (2004) no. 2, pp. 115-150 | DOI | MR | Zbl
[40] Topics in Fourier analysis and function spaces, Mathematik und ihre Anwendungen in Physik und Technik [Mathematics and its Applications in Physics and Technology], 42, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1987 | MR | Zbl
[41] Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross, J. Approx. Theory, Volume 161 (2009) no. 2, pp. 748-786 | DOI | MR | Zbl
[42] On the norms of spectral multipliers of “quasi-homogeneous” operators on homogeneous groups, Trans. Amer. Math. Soc., Volume 351 (1999) no. 9, pp. 3743-3755 | DOI | MR | Zbl
[43] Multivariable spectral multipliers and analysis of quasielliptic operators on fractals, Indiana Univ. Math. J., Volume 58 (2009) no. 1, pp. 317-334 | DOI | MR | Zbl
[44] Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970 | MR | Zbl
[45] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993 (With the assistance of Timothy S. Murphy. Monographs in Harmonic Analysis, III) | MR | Zbl
[46] A weighted multiplier theorem for Rockland operators, Colloq. Math., Volume 51 (1987), pp. 335-344 | MR | Zbl
[47] Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, 18, North-Holland Publishing Co., Amsterdam, 1978 | MR | Zbl
[48] Spaces of Besov-Hardy-Sobolev type, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1978 (Teubner-Texte zur Mathematik, With German, French and Russian summaries) | MR | Zbl
[49] Theory of function spaces, Monographs in Mathematics, 78, Birkhäuser Verlag, Basel, 1983 | DOI | MR | Zbl
[50] The structure of functions, Monographs in Mathematics, 97, Birkhäuser Verlag, Basel, 2001 | MR | Zbl
[51] Analysis and geometry on groups, Cambridge Tracts in Mathematics, 100, Cambridge University Press, Cambridge, 1992 | MR | Zbl
[52] Marcinkiewicz multipliers on the Heisenberg group, Bull. Austral. Math. Soc., Volume 61 (2000) no. 1, pp. 53-68 | DOI | MR | Zbl
Cité par Sources :