Étant donné une représentation irreductible d’un groupe complexe semi-simple et simplement connexe , nous considérons l’adhérence de l’image de dans . Nous déterminons les représentations pour lesquelles est normale, respectivement lisse.
Given an irreducible representation of a complex simply connected semisimple algebraic group we consider the closure of the image of in . We determine for which the variety is normal and for which is smooth.
Keywords: semisimple algebraic groups, group compactifications
Mot clés : groupes algébriques semi-simples, plongements projectifs d’un groupe
Bravi, Paolo 1 ; Gandini, Jacopo 1 ; Maffei, Andrea 1 ; Ruzzi, Alessandro 1
@article{AIF_2011__61_6_2435_0, author = {Bravi, Paolo and Gandini, Jacopo and Maffei, Andrea and Ruzzi, Alessandro}, title = {Normality and non-normality of group compactifications in simple projective spaces}, journal = {Annales de l'Institut Fourier}, pages = {2435--2461}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {6}, year = {2011}, doi = {10.5802/aif.2679}, mrnumber = {2976317}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2679/} }
TY - JOUR AU - Bravi, Paolo AU - Gandini, Jacopo AU - Maffei, Andrea AU - Ruzzi, Alessandro TI - Normality and non-normality of group compactifications in simple projective spaces JO - Annales de l'Institut Fourier PY - 2011 SP - 2435 EP - 2461 VL - 61 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2679/ DO - 10.5802/aif.2679 LA - en ID - AIF_2011__61_6_2435_0 ER -
%0 Journal Article %A Bravi, Paolo %A Gandini, Jacopo %A Maffei, Andrea %A Ruzzi, Alessandro %T Normality and non-normality of group compactifications in simple projective spaces %J Annales de l'Institut Fourier %D 2011 %P 2435-2461 %V 61 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2679/ %R 10.5802/aif.2679 %G en %F AIF_2011__61_6_2435_0
Bravi, Paolo; Gandini, Jacopo; Maffei, Andrea; Ruzzi, Alessandro. Normality and non-normality of group compactifications in simple projective spaces. Annales de l'Institut Fourier, Tome 61 (2011) no. 6, pp. 2435-2461. doi : 10.5802/aif.2679. https://aif.centre-mersenne.org/articles/10.5802/aif.2679/
[1] Éléments de mathématique, Fasc. XXXIV. Groupes et algèbres de Lie. Chapitres IV, V, VI, Actualités Scientifiques et Industrielles, 1337, Hermann Paris, 1968 | MR | Zbl
[2] Variétés sphériques et théorie de Mori, Duke Math. J., Volume 72 (1993) no. 2, pp. 369-404 | DOI | MR | Zbl
[3] On normality of cones over symmetric varieties, Tohoku Math. J. (2), Volume 58 (2006) no. 4, pp. 599-616 | DOI | MR | Zbl
[4] Projective normality of complete symmetric varieties, Duke Math. J., Volume 122 (2004), pp. 93-123 | DOI | MR | Zbl
[5] Normality and non normality of certain semigroups and orbit closures, Algebraic transformation groups and algebraic varieties (Encyclopaedia Math. Sci.), Volume 132, Springer, Berlin, 2004, pp. 15-35 | MR | Zbl
[6] Complete symmetric varieties, Invariant Theory (Lecture Notes in Math.), Volume 996, Springer, Berlin, 1983, pp. 1-44 | Zbl
[7] Projective normality of the wonderful compactification of semisimple adjoint groups, Math. Z., Volume 239 (2002), pp. 673-682 | DOI | MR | Zbl
[8] The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) (1991), pp. 225-249 | MR | Zbl
[9] Local properties of algebraic group actions, DMV Sem., Volume 13 (1989), pp. 63-75 | MR | Zbl
[10] Smooth projective symmetric varieties with Picard number equal to one (To appear in Internat. J. Math)
[11] The partial order of dominant weights, Adv. Math., Volume 136 (1998) no. 2, pp. 340-364 | DOI | MR | Zbl
[12] Equivariant compactifications of reductive groups, Sb. Math., Volume 194 (2003) no. 3-4, pp. 589-616 | DOI | MR | Zbl
[13] Plongements d’espaces symétriques algébriques: une classification, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 17 (1990) no. 2, pp. 165-195 | Numdam | MR | Zbl
Cité par Sources :