Dans ce travail nous calculons l’anneau d’intersection avec des coef- ficients entiers du champ des revêtements cycliques lisses et uniformes de la droite projective. Nous explicitons aussi tous les générateurs.
In this paper we compute the integral Chow ring of the stack of smooth uniform cyclic covers of the projective line and we give explicit generators.
Keywords: Intersection theory, cyclic covers, algebraic stacks, moduli stacks of curves
Mot clés : théorie de l’intersection, revêtements cycliques, champs algébriques, champs de modules des courbes
Fulghesu, Damiano 1 ; Viviani, Filippo 2
@article{AIF_2011__61_6_2249_0, author = {Fulghesu, Damiano and Viviani, Filippo}, title = {The {Chow} ring of the stack of cyclic covers of the projective line}, journal = {Annales de l'Institut Fourier}, pages = {2249--2275}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {6}, year = {2011}, doi = {10.5802/aif.2672}, mrnumber = {2976310}, zbl = {1254.14016}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2672/} }
TY - JOUR AU - Fulghesu, Damiano AU - Viviani, Filippo TI - The Chow ring of the stack of cyclic covers of the projective line JO - Annales de l'Institut Fourier PY - 2011 SP - 2249 EP - 2275 VL - 61 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2672/ DO - 10.5802/aif.2672 LA - en ID - AIF_2011__61_6_2249_0 ER -
%0 Journal Article %A Fulghesu, Damiano %A Viviani, Filippo %T The Chow ring of the stack of cyclic covers of the projective line %J Annales de l'Institut Fourier %D 2011 %P 2249-2275 %V 61 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2672/ %R 10.5802/aif.2672 %G en %F AIF_2011__61_6_2249_0
Fulghesu, Damiano; Viviani, Filippo. The Chow ring of the stack of cyclic covers of the projective line. Annales de l'Institut Fourier, Tome 61 (2011) no. 6, pp. 2249-2275. doi : 10.5802/aif.2672. https://aif.centre-mersenne.org/articles/10.5802/aif.2672/
[1] The Picard groups of the moduli spaces of curves, Topology, Volume 26 (1987) no. 2, pp. 153-171 | DOI | MR | Zbl
[2] Stacks of cyclic covers of projective spaces, Compos. Math., Volume 140 (2004) no. 3, pp. 647-666 | DOI | MR | Zbl
[3] Stacks of trigonal curves To appear in Trans. Amer. Math. Soc. (available at arXiv:0903.0965)
[4] The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969) no. 36, pp. 75-109 | DOI | Numdam | MR | Zbl
[5] The integral Chow ring of the stack of hyperelliptic curves of even genus, Math. Research Letter (2008) no. 15, pp. 10001-10015 | MR | Zbl
[6] Equivariant intersection theory, Invent. Math., Volume 131 (1998) no. 3, pp. 595-634 | DOI | MR | Zbl
[7] Chow rings of moduli spaces of curves, Ann. of Math. (2), Volume 132 (1990) no. 2, pp. 331-419 | DOI | MR | Zbl
[8] Picard group of moduli of hyperelliptic curves, Math. Z., Volume 258 (2008) no. 2, pp. 319-331 | DOI | MR | Zbl
[9] The Chow ring of the moduli space of curves of genus , The moduli space of curves (Texel Island, 1994) (Progr. Math.), Volume 129, Birkhäuser Boston, Boston, MA, 1995, pp. 267-304 | MR | Zbl
[10] Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34, Springer-Verlag, Berlin, 1965 | MR | Zbl
[11] Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II (Progr. Math.), Volume 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271-328 | MR | Zbl
[12] Equivariant Chow rings of , and , J. Reine Angew. Math., Volume 496 (1998), pp. 131-148 | DOI | MR | Zbl
[13] The Chow ring of a classifying space, Algebraic -theory (Seattle, WA, 1997) (Proc. Sympos. Pure Math.), Volume 67, Amer. Math. Soc., Providence, RI, 1999, pp. 249-281 | MR | Zbl
[14] On the Chow ring of the classifying stack of , J. Reine Angew. Math., Volume 523 (2000), pp. 1-54 | DOI | MR | Zbl
[15] The Chow ring of , Invent. Math., Volume 131 (1998) no. 3, pp. 635-644 | DOI | MR
Cité par Sources :