Utilisant l’ inégalité BMY et une évaluation pour le nombre de Milnor nous prouvons que chaque anneau dans sans auto-intersections ne peut avoir qu’ au plus trois singularités cuspidalles
Using BMY inequality and a Milnor number bound we prove that any algebraic annulus in with no self-intersections can have at most three cuspidal singularities.
Keywords: Annulus, cuspidal singular point, codimension
Mot clés : annulus, point singulier cuspidal, codimension
Borodzik, Maciej 1 ; Zołądek, Henryk 2
@article{AIF_2011__61_4_1539_0, author = {Borodzik, Maciej and Zo{\l}\k{a}dek, Henryk}, title = {Number of singular points of an annulus in $\mathbb{C}^2$}, journal = {Annales de l'Institut Fourier}, pages = {1539--1555}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {4}, year = {2011}, doi = {10.5802/aif.2650}, mrnumber = {2951503}, zbl = {1238.14049}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2650/} }
TY - JOUR AU - Borodzik, Maciej AU - Zołądek, Henryk TI - Number of singular points of an annulus in $\mathbb{C}^2$ JO - Annales de l'Institut Fourier PY - 2011 SP - 1539 EP - 1555 VL - 61 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2650/ DO - 10.5802/aif.2650 LA - en ID - AIF_2011__61_4_1539_0 ER -
%0 Journal Article %A Borodzik, Maciej %A Zołądek, Henryk %T Number of singular points of an annulus in $\mathbb{C}^2$ %J Annales de l'Institut Fourier %D 2011 %P 1539-1555 %V 61 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2650/ %R 10.5802/aif.2650 %G en %F AIF_2011__61_4_1539_0
Borodzik, Maciej; Zołądek, Henryk. Number of singular points of an annulus in $\mathbb{C}^2$. Annales de l'Institut Fourier, Tome 61 (2011) no. 4, pp. 1539-1555. doi : 10.5802/aif.2650. https://aif.centre-mersenne.org/articles/10.5802/aif.2650/
[1] Embeddings of the line in the plane, J. Reine Angew. Math., Volume 276 (1975), pp. 148-166 | MR | Zbl
[2] Number of singular points of a genus curve with one place at infinity (arXiv:0908.4500)
[3] Complex algebraic plane curves via the Poincaré-Hopf formula. I. Parametric lines, Pacific J. Math., Volume 229 (2007) no. 2, pp. 307-338 | DOI | MR | Zbl
[4] Complex algebraic plane curves via Poincaré-Hopf formula. III. Codimension bounds, J. Math. Kyoto Univ., Volume 48 (2008) no. 3, pp. 529-570 | MR | Zbl
[5] Complex algebraic plane curves via Poincaré-Hopf formula. II. Annuli, Israel J. Math., Volume 175 (2010), pp. 301-347 | DOI | MR | Zbl
[6] Closed embeddings of in . I, J. Algebra, Volume 322 (2009) no. 9, pp. 2950-3002 | DOI | MR | Zbl
[7] -acyclic surfaces and their deformations, Classification of algebraic varieties (L’Aquila, 1992) (Contemp. Math.), Volume 162, Amer. Math. Soc., Providence, RI, 1994, pp. 143-208 | MR | Zbl
[8] On rational cuspidal curves. I. Sharp estimate for degree via multiplicities, Math. Ann., Volume 324 (2002) no. 4, pp. 657-673 | DOI | MR | Zbl
[9] Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace , J. Math. Soc. Japan, Volume 26 (1974), pp. 241-257 | DOI | MR | Zbl
[10] On the logarithmic Kodaira dimension of the complement of a curve in , Proc. Japan Acad. Ser. A Math. Sci., Volume 54 (1978) no. 6, pp. 157-162 | DOI | MR | Zbl
[11] An irreducible, simply connected algebraic curve in is equivalent to a quasihomogeneous curve, Dokl. Akad. Nauk SSSR, Volume 271 (1983) no. 5, pp. 1048-1052 | MR | Zbl
[12] On the number of singular points of a plane affine algebraic curve, Linear and complex analysis problem book, Volume 1043 (1984), pp. 662-663
[13] Some estimates for plane cuspidal curves (1993) (Seminaire d’Algèbre et Géométrie)
[14] On the number of singular points of complex plane curves (1995) (Algebraic Geometry)
Cité par Sources :