[Groupes de Veech du monstre du Loch Ness]
Nous classifions les groupes de Veech des surfaces de translation non compactes domestiquées. En particulier, nous prouvons que tous les sous groupes dénombrables de
We classify Veech groups of tame non-compact flat surfaces. In particular we prove that all countable subgroups of
Keywords: Translation surfaces, infinite genus surfaces, Veech groups
Mots-clés : surfaces de translation, surfaces de genre infini, groupes de Veech
Przytycki, Piotr 1 ; Schmithüsen, Gabriela 2 ; Valdez, Ferrán 3
@article{AIF_2011__61_2_673_0, author = {Przytycki, Piotr and Schmith\"usen, Gabriela and Valdez, Ferr\'an}, title = {Veech {Groups} of {Loch} {Ness} {Monsters}}, journal = {Annales de l'Institut Fourier}, pages = {673--687}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {2}, year = {2011}, doi = {10.5802/aif.2625}, mrnumber = {2895069}, zbl = {1266.32016}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2625/} }
TY - JOUR AU - Przytycki, Piotr AU - Schmithüsen, Gabriela AU - Valdez, Ferrán TI - Veech Groups of Loch Ness Monsters JO - Annales de l'Institut Fourier PY - 2011 SP - 673 EP - 687 VL - 61 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2625/ DO - 10.5802/aif.2625 LA - en ID - AIF_2011__61_2_673_0 ER -
%0 Journal Article %A Przytycki, Piotr %A Schmithüsen, Gabriela %A Valdez, Ferrán %T Veech Groups of Loch Ness Monsters %J Annales de l'Institut Fourier %D 2011 %P 673-687 %V 61 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2625/ %R 10.5802/aif.2625 %G en %F AIF_2011__61_2_673_0
Przytycki, Piotr; Schmithüsen, Gabriela; Valdez, Ferrán. Veech Groups of Loch Ness Monsters. Annales de l'Institut Fourier, Tome 61 (2011) no. 2, pp. 673-687. doi : 10.5802/aif.2625. https://aif.centre-mersenne.org/articles/10.5802/aif.2625/
[1] Topologie des feuilles génériques, Ann. of Math. (2), Volume 141 (1995) no. 2, pp. 387-422 | DOI | MR | Zbl
[2] Dynamics on an infinite surface with the lattice property (2008) (arXiv:0802.0189) | Zbl
[3] Dynamics on the infinite staircase surface (2008) (http://www.math.bgu.ac.il//~barakw/papers/staircase.pdf)
[4] Infinite translation surfaces with infinitely generated Veech groups (2008) (preprint, http://www.cmi.univ-mrs.fr/~hubert/articles/hub-schmithuesen.pdf) | MR | Zbl
[5] Problems on billiards, flat surfaces and translation surfaces, Problems on mapping class groups and related topics (Proc. Sympos. Pure Math.), Volume 74, Amer. Math. Soc., Providence, RI, 2006, pp. 233-243 | MR | Zbl
[6] An introduction to Veech surfaces, Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 501-526 | MR | Zbl
[7] Characterizations of lattice surfaces, Invent. Math., Volume 180 (2010) no. 3, pp. 535-557 | DOI | MR | Zbl
[8] Infinite genus surfaces and irrational polygonal billiards, Geom. Dedicata, Volume 143 (2009) no. 1, pp. 143-154 | DOI | MR | Zbl
[9] Veech groups, irrational billiards and stable abelian differentials (2009) (arXiv:0905.1591) | Zbl
[10] Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., Volume 97 (1989) no. 3, pp. 553-583 | DOI | MR | Zbl
Cité par Sources :