[Étude asymptotique de l’équation de Camassa–Holm sur la demi-droite pour de grandes valeurs du temps]
Nous étudions le comportement asymptotique, pour de grandes valeurs du temps , de solutions de problèmes aux limites pour l’équation de Camassa–Holm (CH) sur la demi-droite . Cet article prolonge nos travaux antérieurs sur les problèmes aux limites pour l’équation de Camassa–Holm, travaux dont la clef est la formulation et l’analyse de problèmes de Riemann–Hilbert associés. Dans le quart de plan espace-temps , , nous distinguons des régions où les solutions ont un comportement asymptotique qualitativement différent, et nous calculons pour chacune d’elles le terme principal de l’asymptotique en termes de données spectrales associées aux valeurs initiales et au bord.
We study the long-time behavior of solutions of the initial-boundary value (IBV) problem for the Camassa–Holm (CH) equation on the half-line . The paper continues our study of IBV problems for the CH equation, the key tool of which is the formulation and analysis of associated Riemann–Hilbert factorization problems. We specify the regions in the quarter space-time plane , having qualitatively different asymptotic pictures, and give the main terms of the asymptotics in terms of spectral data associated with the initial and boundary values.
Keywords: Camassa–Holm equation, asymptotics, initial-boundary value problem, Riemann–Hilbert problem
Mot clés : équation de Camassa–Holm, asymptotique, problème aux limites, problème de Riemann–Hilbert
Boutet de Monvel, Anne 1 ; Shepelsky, Dmitry 2
@article{AIF_2009__59_7_3015_0, author = {Boutet de Monvel, Anne and Shepelsky, Dmitry}, title = {Long time asymptotics of the {Camassa{\textendash}Holm} equation on the half-line}, journal = {Annales de l'Institut Fourier}, pages = {3015--3056}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {7}, year = {2009}, doi = {10.5802/aif.2514}, mrnumber = {2649345}, zbl = {1191.35245}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2514/} }
TY - JOUR AU - Boutet de Monvel, Anne AU - Shepelsky, Dmitry TI - Long time asymptotics of the Camassa–Holm equation on the half-line JO - Annales de l'Institut Fourier PY - 2009 SP - 3015 EP - 3056 VL - 59 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2514/ DO - 10.5802/aif.2514 LA - en ID - AIF_2009__59_7_3015_0 ER -
%0 Journal Article %A Boutet de Monvel, Anne %A Shepelsky, Dmitry %T Long time asymptotics of the Camassa–Holm equation on the half-line %J Annales de l'Institut Fourier %D 2009 %P 3015-3056 %V 59 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2514/ %R 10.5802/aif.2514 %G en %F AIF_2009__59_7_3015_0
Boutet de Monvel, Anne; Shepelsky, Dmitry. Long time asymptotics of the Camassa–Holm equation on the half-line. Annales de l'Institut Fourier, Tome 59 (2009) no. 7, pp. 3015-3056. doi : 10.5802/aif.2514. https://aif.centre-mersenne.org/articles/10.5802/aif.2514/
[1] Multipeakons and the classical moment problem, Adv. Math., Volume 154 (2000) no. 2, pp. 229-257 | DOI | MR | Zbl
[2] The string density problem and the Camassa-Holm equation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 365 (2007) no. 1858, pp. 2299-2312 | DOI | MR | Zbl
[3] The mKdV equation on the half-line, J. Inst. Math. Jussieu, Volume 3 (2004) no. 2, pp. 139-164 | DOI | MR | Zbl
[4] Integrable nonlinear evolution equations on a finite interval, Comm. Math. Phys., Volume 263 (2006) no. 1, pp. 133-172 | DOI | MR | Zbl
[5] Long-Time Asymptotics for the Camassa–Holm Equation, SIAM J. Math. Anal., Volume 41 (2009) no. 4, pp. 1559-1588 | DOI
[6] Initial boundary value problem for the mKdV equation on a finite interval, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 5, p. 1477-1495, xv, xxi | DOI | Numdam | MR | Zbl
[7] Riemann-Hilbert approach for the Camassa-Holm equation on the line, C. R. Math. Acad. Sci. Paris, Volume 343 (2006) no. 10, pp. 627-632 | MR | Zbl
[8] The Camassa-Holm equation on the half-line: a Riemann-Hilbert approach, J. Geom. Anal., Volume 18 (2008) no. 2, pp. 285-323 | DOI | MR | Zbl
[9] Long-time asymptotics of the Camassa–Holm equation on the line, Proceedings of the Conference on Integrable Systems, Random Matrices, and Applications: A conference in honor of Percy Deift’s 60th birthday (Contemporary Mathematics), Volume 458 (2008), pp. 99-116 | MR
[10] Riemann-Hilbert problem in the inverse scattering for the Camassa-Holm equation on the line, Probability, geometry and integrable systems (Math. Sci. Res. Inst. Publ.), Volume 55, Cambridge Univ. Press, Cambridge, 2008, pp. 53-75 | MR | Zbl
[11] A class of linearizable problems for the Camassa–Holm equation on the half-line (2009) (In preparation) | Zbl
[12] An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., Volume 71 (1993) no. 11, pp. 1661-1664 | DOI | MR | Zbl
[13] A new integrable shallow water equation, Hutchinson, John W. et al. (eds.), Advances in Applied Mechanics. Vol. 31, Boston, MA: Academic Press, p. 1-33, 1994 | Zbl
[14] Integral and integrable algorithms for a nonlinear shallow-water wave equation, J. Comput. Phys., Volume 216 (2006) no. 2, pp. 547-572 | DOI | MR
[15] A shallow water equation on the circle, Comm. Pure Appl. Math., Volume 52 (1999) no. 8, pp. 949-982 | DOI | MR | Zbl
[16] On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., Volume 457 (2001) no. 2008, pp. 953-970 | DOI | MR | Zbl
[17] Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, Volume 22 (2006) no. 6, pp. 2197-2207 | DOI | MR | Zbl
[18] The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., Volume 192 (2009) no. 1, pp. 165-186 | DOI | MR | Zbl
[19] On the inverse scattering approach to the Camassa-Holm equation, J. Nonlinear Math. Phys., Volume 10 (2003) no. 3, pp. 252-255 | DOI | MR | Zbl
[20] Stability of a class of solitary waves in compressible elastic rods, Phys. Lett. A, Volume 270 (2000) no. 3-4, pp. 140-148 | DOI | MR | Zbl
[21] The collisionless shock region for the long-time behavior of solutions of the KdV equation, Comm. Pure Appl. Math., Volume 47 (1994) no. 2, pp. 199-206 | DOI | MR | Zbl
[22] A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. (2), Volume 137 (1993) no. 2, pp. 295-368 | DOI | MR | Zbl
[23] Long-time asymptotics for integrable nonlinear wave equations, Important developments in soliton theory (Springer Ser. Nonlinear Dynam.), Springer, Berlin, 1993, pp. 181-204 | MR | Zbl
[24] Long-time asymptotics for integrable systems. Higher order theory, Comm. Math. Phys., Volume 165 (1994) no. 1, pp. 175-191 | DOI | MR | Zbl
[25] A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London Ser. A, Volume 453 (1997) no. 1962, pp. 1411-1443 | DOI | MR | Zbl
[26] Integrable nonlinear evolution equations on the half-line, Comm. Math. Phys., Volume 230 (2002) no. 1, pp. 1-39 | DOI | MR | Zbl
[27] An initial-boundary value problem for the Korteweg-de Vries equation, Math. Comput. Simulation, Volume 37 (1994) no. 4-5, pp. 293-321 Solitons, nonlinear wave equations and computation (New Brunswick, NJ, 1992) | DOI | MR | Zbl
[28] The nonlinear Schrödinger equation on the half-line, Nonlinearity, Volume 18 (2005) no. 4, pp. 1771-1822 | DOI | MR
[29] Painlevé transcendents, Mathematical Surveys and Monographs, 128, American Mathematical Society, Providence, RI, 2006 (The Riemann-Hilbert approach) | MR | Zbl
[30] The Riemann-Hilbert problem and integrable systems, Notices Amer. Math. Soc., Volume 50 (2003) no. 11, pp. 1389-1400 | MR | Zbl
[31] Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., Volume 455 (2002), pp. 63-82 | DOI | MR | Zbl
[32] On solutions of the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., Volume 459 (2003) no. 2035, pp. 1687-1708 | DOI | MR | Zbl
[33] The scattering approach for the Camassa-Holm equation, J. Nonlinear Math. Phys., Volume 9 (2002) no. 4, pp. 389-393 | DOI | MR | Zbl
[34] On the initial boundary value problem for a shallow water equation, J. Math. Phys., Volume 45 (2004) no. 9, pp. 3479-3497 | DOI | MR | Zbl
[35] Parametric representation for the multisoliton solution of the Camassa-Holm equation, J. Phys. Soc. Japan, Volume 74 (2005) no. 7, pp. 1983-1987 | DOI | MR | Zbl
Cité par Sources :