Paradan’s wall crossing formula for partition functions and Khovanski-Pukhlikov differential operator
[Les formules de saut de Paradan pour les fonctions de partitions, et opérateurs de Khovanski-Pukhlikov]
Annales de l'Institut Fourier, Tome 59 (2009) no. 5, pp. 1715-1752.

Soit P(s) une famille de polytopes rationnels paramétrés par des inéquations. On sait que le volume de P(s) est une fonction localement polynomiale des paramètres. Similairement, le nombre de points entiers dans P(s) est une fonction localement quasi-polynomiale des paramètres. Paul-Émile Paradan a donné une formule de saut pour cette fonction, lorsqu’on traverse un mur. Dans cet article, nous donnons une démonstration algébrique de ces formules de saut. Nous exprimons aussi le saut, à  l’aide d’une formule de résidus, ce qui permet de le calculer.

Let P(s) be a family of rational polytopes parametrized by inequations. It is known that the volume of P(s) is a locally polynomial function of the parameters. Similarly, the number of integral points in P(s) is a locally quasi-polynomial function of the parameters. Paul-Émile Paradan proved a jump formula for this function, when crossing a wall. In this article, we give an algebraic proof of this formula. Furthermore, we give a residue formula for the jump, which enables us to compute it.

DOI : 10.5802/aif.2475
Classification : 52B20, 14M25
Keywords: Polytopes, toric varieties
Mot clés : polytopes, variétés toriques

Boysal, Arzu 1 ; Vergne, Michèle 2

1 Bogaziçi University Faculty of Arts and Science Department of Mathematics 34342, Bebek-Istanbul (Turkey)
2 Ecole Polytechnique Centre de Mathématiques Laurent Schwartz 91128 Palaiseau Cedex (France)
@article{AIF_2009__59_5_1715_0,
     author = {Boysal, Arzu and Vergne, Mich\`ele},
     title = {Paradan{\textquoteright}s wall crossing formula for partition functions and {Khovanski-Pukhlikov} differential operator},
     journal = {Annales de l'Institut Fourier},
     pages = {1715--1752},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {5},
     year = {2009},
     doi = {10.5802/aif.2475},
     mrnumber = {2573189},
     zbl = {1186.52006},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2475/}
}
TY  - JOUR
AU  - Boysal, Arzu
AU  - Vergne, Michèle
TI  - Paradan’s wall crossing formula for partition functions and Khovanski-Pukhlikov differential operator
JO  - Annales de l'Institut Fourier
PY  - 2009
SP  - 1715
EP  - 1752
VL  - 59
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2475/
DO  - 10.5802/aif.2475
LA  - en
ID  - AIF_2009__59_5_1715_0
ER  - 
%0 Journal Article
%A Boysal, Arzu
%A Vergne, Michèle
%T Paradan’s wall crossing formula for partition functions and Khovanski-Pukhlikov differential operator
%J Annales de l'Institut Fourier
%D 2009
%P 1715-1752
%V 59
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2475/
%R 10.5802/aif.2475
%G en
%F AIF_2009__59_5_1715_0
Boysal, Arzu; Vergne, Michèle. Paradan’s wall crossing formula for partition functions and Khovanski-Pukhlikov differential operator. Annales de l'Institut Fourier, Tome 59 (2009) no. 5, pp. 1715-1752. doi : 10.5802/aif.2475. https://aif.centre-mersenne.org/articles/10.5802/aif.2475/

[1] Baldoni, M. Welleda; Beck, Matthias; Cochet, Charles; Vergne, Michèle Volume computation for polytopes and partition functions for classical root systems, Discrete Comput. Geom., Volume 35 (2006) no. 4, pp. 551-595 | DOI | MR | Zbl

[2] Baldoni-Silva, W.; De Loera, J. A.; Vergne, M. Counting integer flows in networks, Found. Comput. Math., Volume 4 (2004) no. 3, pp. 277-314 | DOI | MR | Zbl

[3] Brion, Michel; Vergne, Michèle Residue formulae, vector partition functions and lattice points in rational polytopes, J. Amer. Math. Soc., Volume 10 (1997) no. 4, pp. 797-833 | DOI | MR | Zbl

[4] Dahmen, Wolfgang; Micchelli, Charles A. The number of solutions to linear Diophantine equations and multivariate splines, Trans. Amer. Math. Soc., Volume 308 (1988) no. 2, pp. 509-532 | DOI | MR | Zbl

[5] De Concini, C.; Procesi, C. Topics in hyperplane arrangements, polytopes and box splines To appear (available on the personal web page of C. Procesi) | Zbl

[6] De Concini, C.; Procesi, C.; Vergne, M. Vector partition functions and generalized Dahmen-Miccelli spaces (arXiv 0805.2907) | Zbl

[7] Khovanskiĭ, A. G.; Pukhlikov, A. V. The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes, Algebra i Analiz, Volume 4 (1992) no. 4, pp. 188-216 | MR | Zbl

[8] Paradan, P.-E. Jump formulas in Hamiltonian Geometry (arXiv 0411306)

[9] Szenes, András; Vergne, Michèle Residue formulae for vector partitions and Euler-MacLaurin sums, Adv. in Appl. Math., Volume 30 (2003) no. 1-2, pp. 295-342 Formal power series and algebraic combinatorics (Scottsdale, AZ, 2001) | DOI | MR | Zbl

Cité par Sources :