[Repères méromorphes sur les jets de l’hypersurface universelle]
Pour des ordres de jets petits, on sait construire des repères méromorphes sur l’espace des jets verticaux de l’hypersurface universelle
qui paramétrise toutes les hypersurfaces projectives de degré . Siu a annoncé en 2004 que, pour , il existe deux constantes et telles que le fibré tangent tensorisé
est engendré par ses sections globales. Nous établissons cette propriété hors d’un certain ensemble algébrique exceptionnel défini par l’annulation de certains wronskiens, avec l’ordre de pôles effectif , retrouvant ainsi (Paŭn), (Rousseau), et avec .
De plus, quitte à augmenter jusqu’à , la même propriété d’engendrement est satisfaite hors du plus petit sous-ensemble qui est défini par l’annulation de tous les jets d’ordre . Des applications à la dégénérescence algébrique faible (avec ) et forte (avec ) des courbes holomorphes entières en découleront prochainement.
For low order jets, it is known how to construct meromorphic frames on the space of the so-called vertical -jets of the universal hypersurface
parametrizing all projective hypersurfaces of degree . In 2004, for , Siu announced that there exist two constants and such that the twisted tangent bundle
is generated at every point by its global sections. In the present article, we establish this property outside a certain exceptional algebraic subset defined by the vanishing of certain Wronskians, with the effective pole order , thus recovering (Paŭn), (Rousseau), and with .
Moreover, at the cost of raising up to , the same generation property holds outside the smaller set which is defined by the vanishing of all first order jets. Applications to weak (with ) and to strong (with ) algebraic degeneracy of entire holomorphic curves are upcoming.
Keywords: Multivariate Faà di Bruno formula, projective algebraic hypersurfaces, jets of holomorphic curves, weak and strong Green-Griffiths algebraic degeneracy
Mot clés : formule de Faà di Bruno à plusieurs variables, hypersurfaces projectives algébriques, jets de courbes holomorphes, dégénérescence algébrique faible et forte au sens de Green-Griffiths
Merker, Joël 1
@article{AIF_2009__59_3_1077_0, author = {Merker, Jo\"el}, title = {Low pole order frames on vertical jets of the universal hypersurface}, journal = {Annales de l'Institut Fourier}, pages = {1077--1104}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {3}, year = {2009}, doi = {10.5802/aif.2458}, mrnumber = {2543663}, zbl = {1172.32005}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2458/} }
TY - JOUR AU - Merker, Joël TI - Low pole order frames on vertical jets of the universal hypersurface JO - Annales de l'Institut Fourier PY - 2009 SP - 1077 EP - 1104 VL - 59 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2458/ DO - 10.5802/aif.2458 LA - en ID - AIF_2009__59_3_1077_0 ER -
%0 Journal Article %A Merker, Joël %T Low pole order frames on vertical jets of the universal hypersurface %J Annales de l'Institut Fourier %D 2009 %P 1077-1104 %V 59 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2458/ %R 10.5802/aif.2458 %G en %F AIF_2009__59_3_1077_0
Merker, Joël. Low pole order frames on vertical jets of the universal hypersurface. Annales de l'Institut Fourier, Tome 59 (2009) no. 3, pp. 1077-1104. doi : 10.5802/aif.2458. https://aif.centre-mersenne.org/articles/10.5802/aif.2458/
[1] Curves on generic hypersurfaces, Ann. Sci. École Norm. Sup., Volume 19 (1986), pp. 629-636 | Numdam | MR | Zbl
[2] A multivariate Faà di Bruno formula with applications, Trans. Amer. Math. Soc., Volume 348 (1996), pp. 503-520 | DOI | MR | Zbl
[3] Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Proc. Sympos. Pure Math. Amer. Math. Soc., Volume 62 (1997), pp. 285-360 | MR | Zbl
[4] Existence of global invariant jet differentials on projective hypersurfaces of high degree (to appear in Math. Ann., arxiv.org/abs/0802.0045/)
[5] Differential equations on complex projective hypersurfaces of low dimension, Compos. Math., Volume 144 (2008), pp. 920-932 (arxiv.org/abs/0706.1051/) | DOI | MR
[6] Effective algebraic degeneracy (nov. 2008) (preprint, arxiv.org/abs/0811.2346/)
[7] Sur le lemme de Brody, Invent. Math., Volume 173 (2008), pp. 305-314 | DOI | MR | Zbl
[8] Subvarieties of generic complete intersections, Invent. Math., Volume 94 (1988), pp. 163-169 II. Math. Ann. 289 (1991), p.465–471 | DOI | MR | Zbl
[9] Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979, Proc. Inter. Sympos. Berkeley, CA, 1979 (1980), pp. 41-74 | MR | Zbl
[10] An algorihm to generate all polynomials in the -jet of a holomorphic disc that are invariant under source reparametrization (arxiv.org/abs/0808.3547/)
[11] Four explicit formulas for the prolongations of an infinitesimal Lie symmetry and multivariate Faà di Bruno formulas (arxiv.org/abs/math/0411650)
[12] Jets de Demailly-Semple d’ordres 4 et 5 en dimension 2, Int. J. Contemp. Math. Sciences, Volume 3 (2008), pp. 861-933 (arxiv.org/abs/0710.2393) | MR
[13] Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity, Math. Ann., Volume 340 (2008), pp. 875-892 | DOI | MR | Zbl
[14] Weak analytic hyperbolicity of complements of generic surfaces of high degree in projective 3-space, Osaka J. Math., Volume 44 (2007), pp. 955-971 | MR | Zbl
[15] Weak analytic hyperbolicity of generic hypersurfaces of high degree in , Ann. Fac. Sci. Toulouse, Volume XIV (2007), pp. 369-383 | DOI | Numdam | MR | Zbl
[16] Équations différentielles sur les hypersurfaces de , J. Math. Pures Appl. (9), Volume 86 (2006), pp. 322-341 | MR | Zbl
[17] Étude des jets de Demailly-Semple en dimension 3, Ann. Inst. Fourier, Volume 56 (2006), pp. 397-421 | DOI | Numdam | MR | Zbl
[18] Hyperbolicity in complex geometry, p.543-566, The legacy of Niels Henrik Abel, Springer-Verlag, Berlin, 2004 | MR | Zbl
[19] Numerical criteria for the positivity of the difference of ample divisors, Math. Z., Volume 219 (1995), pp. 387-401 | DOI | MR | Zbl
[20] On a conjecture of Clemens on rational curves on hypersurfaces, J. Diff. Geom., Volume 44 (1996), pp. 200-213 A correction: “On a conjecture of Clemens on rational curves on hypersurfaces”, J. Diff. Geom. 49 (1998), p.601–611 | MR | Zbl
Cité par Sources :