[Sur la distribution du temps de sortie pour le flot linéaire dans un réseau hexagonal]
Nous considérons la région obtenue en enlevant de les disques de rayon , centrés aux points de coordonnées entières avec . Nous étudions la répartition de la longueur du libre parcours (temps de sortie) d’une particule ponctuelle, partant de sur une trajectoire rectiligne de direction quand . Pour tout nombre entier , on montre la convergence faible des mesures de probabilité attachées aux variables aléatoires , en calculant la distribution limite d’une manière explicite. Pour , respectivement , ce résultat mène à des formules asymptotiques pour le temps de sortie d’un billard avec des poches de rayon centrés aux coins dans un hexagone régulier, respectivement dans un carré.
Consider the region obtained by removing from the discs of radius , centered at the points of integer coordinates with . We are interested in the distribution of the free path length (exit time) of a point particle, moving from along a linear trajectory of direction , as . For every integer number , we prove the weak convergence of the probability measures associated with the random variables , explicitly computing the limiting distribution. For , respectively , this result leads to asymptotic formulas for the exit time of a billiard with pockets of radius centered at the corners and trajectory starting at the center in a regular hexagon, respectively in a square.
Keywords: Periodic Lorentz gas, linear flow, Farey fractions, honeycomb lattice
Mot clés : Gaz de Lorentz périodique, flot linéaire, suite de Farey, réseau hexagonal
Boca, Florin P. 1 ; Gologan, Radu N. 2
@article{AIF_2009__59_3_1043_0, author = {Boca, Florin P. and Gologan, Radu N.}, title = {On the distribution of the free path length of the linear flow in a honeycomb}, journal = {Annales de l'Institut Fourier}, pages = {1043--1075}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {3}, year = {2009}, doi = {10.5802/aif.2457}, mrnumber = {2543662}, zbl = {1173.37036}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2457/} }
TY - JOUR AU - Boca, Florin P. AU - Gologan, Radu N. TI - On the distribution of the free path length of the linear flow in a honeycomb JO - Annales de l'Institut Fourier PY - 2009 SP - 1043 EP - 1075 VL - 59 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2457/ DO - 10.5802/aif.2457 LA - en ID - AIF_2009__59_3_1043_0 ER -
%0 Journal Article %A Boca, Florin P. %A Gologan, Radu N. %T On the distribution of the free path length of the linear flow in a honeycomb %J Annales de l'Institut Fourier %D 2009 %P 1043-1075 %V 59 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2457/ %R 10.5802/aif.2457 %G en %F AIF_2009__59_3_1043_0
Boca, Florin P.; Gologan, Radu N. On the distribution of the free path length of the linear flow in a honeycomb. Annales de l'Institut Fourier, Tome 59 (2009) no. 3, pp. 1043-1075. doi : 10.5802/aif.2457. https://aif.centre-mersenne.org/articles/10.5802/aif.2457/
[1] Distribution of lattice points visible from the origin, Comm. Math. Phys., Volume 213 (2000) no. 2, pp. 433-470 | DOI | MR | Zbl
[2] The average length of a trajectory in a certain billiard in a flat two-torus, New York J. Math. (electronic), Volume 9 (2003), pp. 303-330 | MR | Zbl
[3] The statistics of the trajectory of a certain billiard in a flat two-torus, Comm. Math. Phys., Volume 240 (2003) no. 1-2, pp. 53-73 | DOI | MR | Zbl
[4] On the correlations of directions in the Euclidean plane, Trans. Amer. Math. Soc., Volume 358 (2006) no. 4, pp. 1797-1825 | DOI | MR | Zbl
[5] The distribution of the free path lengths in the periodic two-dimensional Lorentz gas in the small-scatterer limit, Comm. Math. Phys., Volume 269 (2007) no. 2, pp. 425-471 | DOI | MR | Zbl
[6] On the distribution of free path lengths for the periodic Lorentz gas. III., Comm. Math. Phys., Volume 236 (2003) no. 2, pp. 199-221 | DOI | MR | Zbl
[7] The Boltzman-Grad limit of the periodic Lorentz gas in two space dimensions, C. R. Math. Acad. Sci. Paris, Volume 346 (2008) no. 7-8, pp. 477-482 | MR | Zbl
[8] The Lyapunov exponent in the Sinai billiard in the small scatterer limit, Nonlinearity, Volume 10 (1997) no. 1, pp. 159-173 | DOI | MR | Zbl
[9] The periodic Lorentz gas in the Boltzman-Grad limit, International Congress of Mathematicians, Volume III (2006), pp. 183-201 | MR | Zbl
[10] The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems (to appear in Ann. of Math.)
Cité par Sources :