Spherical Stein manifolds and the Weyl involution
[Variétés de Stein sphériques et l’involution de Weyl]
Annales de l'Institut Fourier, Tome 59 (2009) no. 3, pp. 1029-1041.

On considère une opération d’un groupe de Lie compact connexe sur une variété de Stein par des transformations holomorphes. On démontre que la variété est sphérique si, et seulement si, il existe une involution antiholomorphe conservant toute orbite. De plus, pour une variété de Stein sphérique, on construit une involution antiholomorphe et équivariante par rapport à l’involution de Weyl du groupe opérant. On en déduit que cette involution laisse stable toute orbite. La construction utilise quelques propriétés des sous-groupes sphériques invariantes par certains automorphismes réels des groupes réductifs complexes.

We consider an action of a connected compact Lie group on a Stein manifold by holomorphic transformations. We prove that the manifold is spherical if and only if there exists an antiholomorphic involution preserving each orbit. Moreover, for a spherical Stein manifold, we construct an antiholomorphic involution, which is equivariant with respect to the Weyl involution of the acting group, and show that this involution stabilizes each orbit. The construction uses some properties of spherical subgroups invariant under certain real automorphisms of complex reductive groups.

DOI : 10.5802/aif.2456
Classification : 32M05, 43A85
Keywords: Reductive groups, spherical subgroups, spherical Stein manifolds, antiholomorphic involutions
Mot clés : groupes réductifs, sous-groupes sphériques, variétés de Stein sphériques, involutions antiholomorphes

Akhiezer, Dmitri 1

1 Institute for Information Transmission Problems B. Karetny per. 19 Moscow, 127994 (Russia)
@article{AIF_2009__59_3_1029_0,
     author = {Akhiezer, Dmitri},
     title = {Spherical {Stein} manifolds and the {Weyl} involution},
     journal = {Annales de l'Institut Fourier},
     pages = {1029--1041},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {3},
     year = {2009},
     doi = {10.5802/aif.2456},
     mrnumber = {2543661},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2456/}
}
TY  - JOUR
AU  - Akhiezer, Dmitri
TI  - Spherical Stein manifolds and the Weyl involution
JO  - Annales de l'Institut Fourier
PY  - 2009
SP  - 1029
EP  - 1041
VL  - 59
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2456/
DO  - 10.5802/aif.2456
LA  - en
ID  - AIF_2009__59_3_1029_0
ER  - 
%0 Journal Article
%A Akhiezer, Dmitri
%T Spherical Stein manifolds and the Weyl involution
%J Annales de l'Institut Fourier
%D 2009
%P 1029-1041
%V 59
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2456/
%R 10.5802/aif.2456
%G en
%F AIF_2009__59_3_1029_0
Akhiezer, Dmitri. Spherical Stein manifolds and the Weyl involution. Annales de l'Institut Fourier, Tome 59 (2009) no. 3, pp. 1029-1041. doi : 10.5802/aif.2456. https://aif.centre-mersenne.org/articles/10.5802/aif.2456/

[1] Akhiezer, D. N.; Vinberg, E. B. Weakly symmetric spaces and spherical varieties, Transform. Groups, Volume 4 (1999) no. 1, pp. 3-24 | DOI | MR | Zbl

[2] Akhiezer, Dmitri; Heinzner, Peter Spherical Stein spaces, Manuscripta Math., Volume 114 (2004) no. 3, pp. 327-334 | DOI | MR | Zbl

[3] Akhiezer, Dmitri; Püttmann, Annett Antiholomorphic involutions of spherical complex spaces, Proc. Amer. Math. Soc., Volume 136 (2008) no. 5, pp. 1649-1657 | DOI | MR | Zbl

[4] Brion, Michel; Pauer, Franz Valuations des espaces homogènes sphériques, Comment. Math. Helv., Volume 62 (1987) no. 2, pp. 265-285 | DOI | MR | Zbl

[5] Faraut, J.; Thomas, E. G. F. Invariant Hilbert spaces of holomorphic functions, J. Lie Theory, Volume 9 (1999) no. 2, pp. 383-402 | MR | Zbl

[6] Helgason, Sigurdur Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1978 | MR | Zbl

[7] Knop, Friedrich; Van Steirteghem, Bart Classification of smooth affine spherical varieties, Transform. Groups, Volume 11 (2006) no. 3, pp. 495-516 | DOI | MR | Zbl

[8] Luna, Domingo Slices étales, Sur les groupes algébriques, Soc. Math. France, Paris, 1973, p. 81-105. Bull. Soc. Math. France, Paris, Mémoire 33 | Numdam | MR | Zbl

[9] Montgomery, Deane Simply connected homogeneous spaces, Proc. Amer. Math. Soc., Volume 1 (1950), pp. 467-469 | DOI | MR | Zbl

[10] Mostow, G. D. Self-adjoint groups, Ann. of Math. (2), Volume 62 (1955), pp. 44-55 | DOI | MR | Zbl

[11] Servedio, Frank J. Prehomogeneous vector spaces and varieties, Trans. Amer. Math. Soc., Volume 176 (1973), pp. 421-444 | DOI | MR | Zbl

[12] Vinberg, É. A.; Kimelʼfelʼd, B. N. Homogeneous domains on flag manifolds and spherical subsets of semisimple Lie groups, Funktsional. Anal. i Prilozhen., Volume 12 (1978) no. 3, p. 12-19, 96 | DOI | MR | Zbl

Cité par Sources :