A New Proof of Okaji’s Theorem for a Class of Sum of Squares Operators
[Une Nouvelle Preuve du Théorème d’Okaji pour une Classe d’Opérateurs “Somme de Carrés”]
Annales de l'Institut Fourier, Tome 59 (2009) no. 2, pp. 595-619.

Soit P un opérateur différentiel analytique, de la forme “somme de carrés”, avec la condition d’Hörmander réalisée. Soit q un point caractéristique de P. On suppose que q est un point d’un “symplectic Poisson stratum” de codimension deux (au sens de Treves). D’après le théorème d’Okaji, P est hypoelliptique analytique en q. Autrement dit, la conjecture de Treves est vraie en codimension deux. On donne dans ce travail une preuve élémentaire de ce fait.

Let P be a linear partial differential operator with analytic coefficients. We assume that P is of the form “sum of squares”, satisfying Hörmander’s bracket condition. Let q be a characteristic point for P. We assume that q lies on a symplectic Poisson stratum of codimension two. General results of Okaji show that P is analytic hypoelliptic at q. Hence Okaji has established the validity of Treves’ conjecture in the codimension two case. Our goal here is to give a simple, self-contained proof of this fact.

DOI : 10.5802/aif.2442
Classification : 35H10, 35H20, 35A17, 35A20, 35A27
Keywords: Analytic hypoelliptic, sum of squares
Mot clés : hypoelliptique analytique, somme de carrés

Cordaro, Paulo D. 1 ; Hanges, Nicholas 2

1 Universidade de São Paulo São Paulo, SP (Brazil)
2 Lehman College Department of Mathematics/CUNY Bronx, New York 10468 (USA)
@article{AIF_2009__59_2_595_0,
     author = {Cordaro, Paulo D. and Hanges, Nicholas},
     title = {A {New} {Proof} of {Okaji{\textquoteright}s} {Theorem}  for a {Class} of {Sum} of {Squares} {Operators}},
     journal = {Annales de l'Institut Fourier},
     pages = {595--619},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {2},
     year = {2009},
     doi = {10.5802/aif.2442},
     mrnumber = {2521430},
     zbl = {1178.35138},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2442/}
}
TY  - JOUR
AU  - Cordaro, Paulo D.
AU  - Hanges, Nicholas
TI  - A New Proof of Okaji’s Theorem  for a Class of Sum of Squares Operators
JO  - Annales de l'Institut Fourier
PY  - 2009
SP  - 595
EP  - 619
VL  - 59
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2442/
DO  - 10.5802/aif.2442
LA  - en
ID  - AIF_2009__59_2_595_0
ER  - 
%0 Journal Article
%A Cordaro, Paulo D.
%A Hanges, Nicholas
%T A New Proof of Okaji’s Theorem  for a Class of Sum of Squares Operators
%J Annales de l'Institut Fourier
%D 2009
%P 595-619
%V 59
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2442/
%R 10.5802/aif.2442
%G en
%F AIF_2009__59_2_595_0
Cordaro, Paulo D.; Hanges, Nicholas. A New Proof of Okaji’s Theorem  for a Class of Sum of Squares Operators. Annales de l'Institut Fourier, Tome 59 (2009) no. 2, pp. 595-619. doi : 10.5802/aif.2442. https://aif.centre-mersenne.org/articles/10.5802/aif.2442/

[1] Bove, A.; Derridj, M.; Tartakoff, D. Analytic hypoellipticity in the presence of non–symplectic characteristic points, J. Funct. Anal., Volume 234 (2006) no. 2, pp. 464-472 | DOI | MR | Zbl

[2] Cordaro, P. D.; Hanges, N.; Soc., Amer. Math. Impact of lower order terms on a model PDE in two variables, Geometric analysis of PDE and several complex variables, Volume 368 (2005), pp. 157-176 | MR | Zbl

[3] Cordaro, P. D.; Hanges, N.; Birkhäuser Symplectic strata and analytic hypoellipticity, Progresss in Nonlinear Differential Equations and Their Applications (Phase Space Analysis of Partial Differential Equations), Volume 69 (2006), pp. 83-94 | MR | Zbl

[4] Cordaro, P. D.; Himonas, A. A. Global analytic regularity for sums of squares of vector fields, Trans. Amer. Math. Soc., Volume 350 (1998) no. 12, pp. 4993-5001 | DOI | MR | Zbl

[5] Hanges, N. Analytic regularity for an operator with Treves curves, J. Funct. Anal., Volume 210 (2004) no. 2, pp. 295-320 | DOI | MR | Zbl

[6] Hanges, N.; Himonas, A. A. Non–analytic hypoellipticity in the presence of symplecticity, Proceedings of the AMS, Volume 126 (1998) no. 2, pp. 405-409 | DOI | MR | Zbl

[7] Hörmander, L. Hypoelliptic second order differential equations, Acta Math., Volume 119 (1967), pp. 147-171 | DOI | MR | Zbl

[8] Hörmander, L. The analysis of linear partial differential operators I, Springer–Verlag, 1983 | Zbl

[9] Menikoff, A. Some examples of hypoelliptic partial differential equations, Math. Ann., Volume 221 (1976), pp. 167-181 | DOI | EuDML | MR | Zbl

[10] Métivier, G. Analytic hypoellipticity for operators with multiple characteristics, Commun. Partial Differ. Equations, Volume 6 (1981) no. 1, pp. 1-90 | MR | Zbl

[11] Okaji, T. Analytic hypoellipticity for operators with symplectic characteristics, J. Math. Kyoto Univ., Volume 25 (1985) no. 3, pp. 489-514 | MR | Zbl

[12] Oleinik, O. A. On the analyticity of solutions of partial differential equations and systems, Astérisque, Volume 2/3 (1973), pp. 272-285 | MR | Zbl

[13] Sibuya, Y. Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient, North–Holland, 1975 | MR | Zbl

[14] Sjöstrand, J. Singularités analytiques microlocales, Astérisque, Volume 95 (1982), pp. 1-166 | MR | Zbl

[15] Tartakoff, D. On the local real analyticity of solutions to b and the ¯-Neumann problem, Acta Math., Volume 145 (1980), pp. 117-204 | DOI | MR | Zbl

[16] Treves, F. Analytic hypoellipticity of a class of pseudodifferential operators with double characteristics and applications to the ¯–Neumann problem, Commun. Partial Differ. Equations, Volume 3 (1978), pp. 475-642 | DOI | MR | Zbl

[17] Treves, F. Symplectic geometry and analytic hypo-ellipticity, Proceedings of Symposia in Pure Mathematics, Volume 65 (1999), pp. 201-219 | MR | Zbl

[18] Treves, F.; Birkhäuser On the analyticity of solutions of sums of squares of vector fields, Progress in Nonlinear Differential Equations and Their Applications (Phase space analysis of partial differential equations), Volume 69 (2006), pp. 315-329 | MR

Cité par Sources :