Etant donné un objet amas-basculant quelconque dans une catégorie triangulée 2-Calabi–Yau sur un corps algébriquement clos (comme dans le cadre de Keller et Reiten), il est possible de définir, pour chaque objet , une fraction rationnelle , en utilisant une formule proposée par Caldero et Keller. On montre, de plus, que l’application associant à est un caractère amassé ; c’est-à-dire qu’elle vérifie une certaine formule de multiplication. Cela permet de prouver qu’elle induit, dans les cas fini et acyclique, une bijection entre objets rigides indécomposables de la catégorie amassée et variables d’amas de l’algèbre amassée correspondante, confirmant ainsi une conjecture de Caldero et Keller.
Starting from an arbitrary cluster-tilting object in a 2-Calabi–Yau triangulated category over an algebraically closed field, as in the setting of Keller and Reiten, we define, for each object , a fraction using a formula proposed by Caldero and Keller. We show that the map taking to is a cluster character, i.e. that it satisfies a certain multiplication formula. We deduce that it induces a bijection, in the finite and the acyclic case, between the indecomposable rigid objects of the cluster category and the cluster variables, which confirms a conjecture of Caldero and Keller.
Keywords: Calabi–Yau triangulated category, cluster algebra, cluster category, cluster-tilting object
Mot clés : catégorie triangulée 2-Calabi–Yau, algèbre amassée, catégorie amassée, objet amas-basculant
Palu, Yann 1
@article{AIF_2008__58_6_2221_0, author = {Palu, Yann}, title = {Cluster characters for {2-Calabi{\textendash}Yau} triangulated categories}, journal = {Annales de l'Institut Fourier}, pages = {2221--2248}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {6}, year = {2008}, doi = {10.5802/aif.2412}, mrnumber = {2473635}, zbl = {1154.16008}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2412/} }
TY - JOUR AU - Palu, Yann TI - Cluster characters for 2-Calabi–Yau triangulated categories JO - Annales de l'Institut Fourier PY - 2008 SP - 2221 EP - 2248 VL - 58 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2412/ DO - 10.5802/aif.2412 LA - en ID - AIF_2008__58_6_2221_0 ER -
%0 Journal Article %A Palu, Yann %T Cluster characters for 2-Calabi–Yau triangulated categories %J Annales de l'Institut Fourier %D 2008 %P 2221-2248 %V 58 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2412/ %R 10.5802/aif.2412 %G en %F AIF_2008__58_6_2221_0
Palu, Yann. Cluster characters for 2-Calabi–Yau triangulated categories. Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 2221-2248. doi : 10.5802/aif.2412. https://aif.centre-mersenne.org/articles/10.5802/aif.2412/
[1] Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., Volume 126 (2005) no. 1, pp. 1-52 | DOI | MR | Zbl
[2] Appendix to Clusters and seeds in acyclic cluster algebras (preprint arXiv: math.RT/0510359)
[3] Cluster structures for 2-Calabi–Yau categories and unipotent groups (preprint arXiv: math.RT/0701557)
[4] Tilting theory and cluster combinatorics, Adv. Math., Volume 204 (2006) no. 2, pp. 572-618 | DOI | MR | Zbl
[5] Cluster mutation via quiver representations (preprint arXiv: math.RT/0412077)
[6] Cluster-tilted algebras, Trans. Amer. Math. Soc., Volume 359 (2007) no. 1, p. 323-332 (electronic) | DOI | MR | Zbl
[7] Quivers with relations arising from clusters ( case), Trans. Amer. Math. Soc., Volume 358 (2006) no. 3, p. 1347-1364 (electronic) | DOI | MR | Zbl
[8] Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv., Volume 81 (2006) no. 3, pp. 595-616 | DOI | MR | Zbl
[9] From triangulated categories to cluster algebras (preprint arXiv: math.RT/0506018) | Zbl
[10] From triangulated categories to cluster algebras II (preprint arXiv: math.RT/0510251)
[11] Cluster algebras IV: Coefficients (preprint arXiv: math.RA/0602259) | Zbl
[12] Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, p. 497-529 (electronic) | DOI | MR | Zbl
[13] Cluster algebras. II. Finite type classification, Invent. Math., Volume 154 (2003) no. 1, pp. 63-121 | DOI | MR | Zbl
[14] Partial flag varieties and preprojective algebras (preprint arXiv: math.RT/0609138)
[15] Semicanonical bases and preprojective algebras II: A multiplication formula (preprint arXiv: math.RT/0509483) | Zbl
[16] Semicanonical bases and preprojective algebras, Ann. Sci. École Norm. Sup. (4), Volume 38 (2005) no. 2, pp. 193-253 | Numdam | MR | Zbl
[17] Rigid modules over preprojective algebras, Invent. Math., Volume 165 (2006) no. 3, pp. 589-632 | DOI | MR
[18] Fomin-Zelevinsky mutation and tilting modules over Calabi–Yau algebras (preprint arXiv: math.RT/0605136)
[19] Mutations in triangulated categories and rigid Cohen–Macaulay modules (preprint arXiv: math.RT/0607736) | Zbl
[20] On triangulated orbit categories, Doc. Math., Volume 10 (2005), p. 551-581 (electronic) | MR | Zbl
[21] The connection between May’s axioms for a triangulated tensor product and Happel’s description of the derived category of the quiver , Doc. Math., Volume 7 (2002), p. 535-560 (electronic) | Zbl
[22] Acyclic Calabi-Yau categories (preprint arXiv: math.RT/0610594)
[23] Cluster-tilted algebras are Gorenstein and stably Calabi–Yau, Adv. Math., Volume 211 (2007) no. 1, pp. 123-151 | DOI | MR | Zbl
[24] From triangulated categories to abelian categories–cluster tilting in a general framework (preprint arXiv: math.RT/0605100) | Zbl
[25] Semicanonical bases arising from enveloping algebras, Adv. Math., Volume 151 (2000) no. 2, pp. 129-139 | DOI | MR | Zbl
[26] Generalized associahedra via quiver representations, Trans. Amer. Math. Soc., Volume 355 (2003) no. 10, p. 4171-4186 (electronic) | DOI | MR | Zbl
[27] On the structure of Calabi–Yau categories with a cluster tilting subcategory (preprint arXiv: math.RT/0607394) | Zbl
Cité par Sources :