Transfert algébrique et action du groupe linéaire sur les puissances divisées modulo 2
Annales de l'Institut Fourier, Tome 58 (2008) no. 5, pp. 1785-1837.

On détermine la dimension d’une représentation du groupe linéaire définie par un sous-espace vectoriel de l’algèbre à puissances divisées, puis on explicite l’image du transfert algébrique en degré générique et celle du transfert algébrique quadruple, et finalement on identifie les indécomposables de degré pair de l’algèbre polynomiale à quatre variables, vue comme module sur l’algèbre de Steenrod.

We compute the dimension of an algebra with divided powers viewed as a representation of the general linear group, then compute the image of the algebraic transfer in generic degrees, and determine the indecomposable elements of even degree in the polynomial algebra in four variables viewed as a module over the Steenrod algebra.

DOI : 10.5802/aif.2399
Classification : 55S10
Mot clés : algèbre de Steenrod, groupe linéaire, puissances divisées
Keywords: Steenrod algebra, linear groups, divided powers

Nam, Tran Ngoc 1

1 Vietnam National University Department of Mathematics 334 Nguyên Trãi Street Hanoi (Vietnam)
@article{AIF_2008__58_5_1785_0,
     author = {Nam, Tran Ngoc},
     title = {Transfert alg\'ebrique et action du groupe lin\'eaire sur les puissances divis\'ees modulo~2},
     journal = {Annales de l'Institut Fourier},
     pages = {1785--1837},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {5},
     year = {2008},
     doi = {10.5802/aif.2399},
     mrnumber = {2445834},
     zbl = {1152.55010},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2399/}
}
TY  - JOUR
AU  - Nam, Tran Ngoc
TI  - Transfert algébrique et action du groupe linéaire sur les puissances divisées modulo 2
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 1785
EP  - 1837
VL  - 58
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2399/
DO  - 10.5802/aif.2399
LA  - fr
ID  - AIF_2008__58_5_1785_0
ER  - 
%0 Journal Article
%A Nam, Tran Ngoc
%T Transfert algébrique et action du groupe linéaire sur les puissances divisées modulo 2
%J Annales de l'Institut Fourier
%D 2008
%P 1785-1837
%V 58
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2399/
%R 10.5802/aif.2399
%G fr
%F AIF_2008__58_5_1785_0
Nam, Tran Ngoc. Transfert algébrique et action du groupe linéaire sur les puissances divisées modulo 2. Annales de l'Institut Fourier, Tome 58 (2008) no. 5, pp. 1785-1837. doi : 10.5802/aif.2399. https://aif.centre-mersenne.org/articles/10.5802/aif.2399/

[1] Adams, J. F. On the structure and applications of the Steenrod algebra, Comment. Math. Helv., Volume 32 (1958), pp. 180-214 | DOI | MR | Zbl

[2] Adams, J. F. On the non-existence of elements of Hopf invariant one, Ann. of Math., Volume 72 (1960), pp. 20-104 | DOI | MR | Zbl

[3] Alghamdi, M. A.; Crabb, M. C.; Hubbuck, J. R. Representations of the homology of BV and the Steenrod algebra I, London Math. Soc. Lecture Note Ser., Volume 176 (1992), pp. 217-234 | MR | Zbl

[4] Barratt, M. G.; Priddy, S. On the homology of non-connected monoids and their associated groups, Comment. Math. Helv., Volume 47 (1972), pp. 1-14 | DOI | MR | Zbl

[5] Boardman, J. M. Modular representations on the homology of powers of real projective spaces, Contemp. Math., Volume 146 (1993), pp. 49-70 | MR | Zbl

[6] Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system I : The user language, J. Symbolic Comput., Volume 24 (1997), pp. 235-265 | DOI | MR | Zbl

[7] Bousfield, A. K.; Curtis, E. B.; Kan, D. M.; Quillen, D. G.; Rector, D. L.; Schlesinger, J. W. The mod p lower central series and the Adams spectral sequence, Topology, Volume 5 (1966), pp. 331-342 | DOI | MR | Zbl

[8] Bruner, R.; Hà, L. M.; Hung, N. H. V. On behavior of the algebraic transfer, à paraître dans Trans. Amer. Math. Soc. | MR | Zbl

[9] Crabb, M. C.; Hubbuck, J. R. Representations of the homology of BV and the Steenrod algebra II, Progr. Math., Volume 136 (1996), pp. 143-154 | MR | Zbl

[10] Crossley, M. D. 𝒜(p)-annihilated elements in H * (P ×P ), Math. Proc. Cambridge Philos. Soc., Volume 120 (1996), pp. 441-453 | DOI | MR | Zbl

[11] Crossley, M. D. 𝒜(p) generators for H * V and Singer’s homological transfer, Math. Z., Volume 230 (1999), pp. 401-411 | DOI | Zbl

[12] Crossley, M. D. Monomial bases for H * (P ×P ) over 𝒜(p), Trans. Amer. Math. Soc., Volume 351 (1999), pp. 171-192 | DOI | MR | Zbl

[13] Curtis, E. B. The Dyer–Lashof algebra and the Λ-algebra, Illinois J. Math., Volume 19 (1975), pp. 231-246 | MR | Zbl

[14] Dyer, E.; Lashof, R. K. Homology of iterated loopspaces, Amer. J. Math., Volume 84 (1962), pp. 35-88 | DOI | MR | Zbl

[15] Eilenberg, S.; MacLane, S. On the groups H(π,n), I, Ann. of Math., Volume 58 (1953), pp. 55-106 | DOI | MR | Zbl

[16] Goerss, P. Unstable projectives and stable Ext : with applications, Proc. London Math. Soc., Volume 53 (1986), pp. 539-561 | DOI | MR | Zbl

[17] Hà, L. M. Sub-Hopf algebras of the Steenrod algebra and the Singer transfer, in preparation

[18] Hung, N. H. V. The cohomology of the Steenrod algebra and representations of the general linear groups, à paraître dans Trans. Amer. Math. Soc. | MR | Zbl

[19] Hung, N. H. V. Spherical classes and the algebraic transfer, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 3893-3910 Erratum 355 (2003), p. 3841–3842 | DOI | MR | Zbl

[20] Hung, N. H. V.; Nam, T. N. The hit problem for the Dickson algebra, Trans. Amer. Math. Soc., Volume 353 (2001), pp. 5029-5040 | DOI | MR | Zbl

[21] Kameko, M. Generators of the cohomology of BV 4 , in preparation

[22] Kameko, M. Products of projective spaces as Steenrod modules, Johns Hopkins University, May (1990) (Ph. D. Thesis)

[23] Lannes, J.; Zarati, S. Foncteurs dérivés de la déstabilisation, C. R. Acad. Sci. Paris Sér. I Math., Volume 296 (1983), pp. 573-576 | MR | Zbl

[24] Lannes, J.; Zarati, S. Invariants de Hopf d’ordre supérieur et suite spectrale d’Adams, C. R. Acad. Sci. Paris Sér. I Math., Volume 296 (1983), pp. 695-698 | Zbl

[25] Lannes, J.; Zarati, S. Sur les foncteurs dérivés de la déstabilisation, Math. Z., Volume 194 (1987), pp. 25-59 | DOI | MR | Zbl

[26] Lin, W. H. Some differentials in the Adams spectral sequence for spheres, preprint

[27] Liulivicius, A. The factorization of cyclic reduced powers by secondary operations, 42, Mem. Amer. Math. Soc., 1962 | Zbl

[28] Mac Lane, S. Homology, Classics in Mathematics, Springer–Verlag, Berlin, 1995 | MR | Zbl

[29] Madsen, I. On the action of the Dyer–Lashof algebra in H * (G), Pacific J. Math., Volume 60 (1975), pp. 235-275 | MR | Zbl

[30] Mahowald, M.; Tangora, M. An infinite subalgebra of Ext 𝒜 ( 2 , 2 ), Trans. Amer. Math. Soc., Volume 132 (1968), pp. 263-274 | DOI | MR | Zbl

[31] Mann, B. M.; Miller, E. Y.; Miller, H. R. S 1 -equivariant function spaces and characteristic classes, Trans. Amer. Math. Soc., Volume 295 (1986), pp. 233-256 | MR | Zbl

[32] Margolis, H.; Priddy, S.; Tangora, M. Another systematic phenomenon in the cohomology of the Steenrod algebra, Topology, Volume 10 (1970), pp. 43-46 | DOI | MR | Zbl

[33] Margolis, H. R. Spectra and the Steenrod algebra, 29, North–Holland Mathematical Library, 1983 | MR | Zbl

[34] May, J. P. The cohomology of restricted Lie algebras and Hopf algebras, applications to the Steenrod algebra, Ph.D. Thesis, Princeton University, 1964 | MR

[35] Milnor, J. The Steenrod algebra and its dual, Ann. of Math., Volume 67 (1958), pp. 150-171 | DOI | MR | Zbl

[36] Minami, N. The Adams spectral sequence and the triple transfer, Amer. J. Math., Volume 117 (1995), pp. 965-985 | DOI | MR | Zbl

[37] Minami, N. On the Kervaire invariant problem, Contemp. Math., Amer. Math. Soc., Providence, RI, Volume 220 (1998), pp. 229-253 | MR | Zbl

[38] Minami, N. The iterated transfer analogue of the new doomsday conjecture, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 2325-2351 | DOI | MR | Zbl

[39] Mitchell, S. Splitting B(/p) n and BT n via modular representation theory, Math. Z., Volume 189 (1985), pp. 1-9 | DOI | MR | Zbl

[40] Mùi, H. Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 22 (1975), pp. 319-369 | MR | Zbl

[41] Nam, T. N. 𝒜-générateurs génériques pour l’algèbre polynomiale, à paraître dans Advances in Mathematics | Zbl

[42] Nam, T. N. Système générateur minimal de 𝔽 2 [x,y,z] comme module sur l’algèbre de Steenrod, (en langue vietnamienne), Mémoire de fin d’études universitaires, Université des Sciences à Hanoï, 1999

[43] Novikov, S. P. On the cohomology of the Steenrod algebra (Russian), Dokl. Akad. Nauk SSSR, Volume 128 (1959), pp. 893-895 | MR | Zbl

[44] Palmieri, J. H. Quillen stratification for the Steenrod algebra, Ann. of Math., Volume 149 (1999), pp. 421-449 | DOI | MR | Zbl

[45] Peterson, F. P. Generators of H * (P P ) as a module over the Steenrod algebra, Abstracts Amer. Math. Soc., 833–55–89, 1987

[46] Peterson, F. P. 𝒜-generators for certain polynomial algebras, Math. Proc. Cambridge Philos. Soc., Volume 105 (1989), pp. 311-312 | DOI | MR | Zbl

[47] Quillen, D. On the completion of a simplicial monoid, preprint

[48] Schwartz, L. Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture, Chicago Lectures in Math., 1994 | Zbl

[49] Singer, W. M. On finite linear groups and the homology of the Steenrod algebra, preprint, 1980

[50] Singer, W. M. Invariant theory and the lambda algebra, Trans. Amer. Math. Soc., Volume 280 (1983), pp. 673-693 | DOI | MR | Zbl

[51] Singer, W. M. The transfer in homological algebra, Math. Z., Volume 202 (1989), pp. 493-523 | DOI | MR | Zbl

[52] Steenrod, N. E.; Epstein, D. B. A. Cohomology operations, Ann. of Math. Stud., 50, Princeton University Press, 1962 | MR | Zbl

[53] Tangora, M. C. On the cohomology of the Steenrod algebra, Math. Z., Volume 116 (1970), pp. 18-64 | DOI | MR | Zbl

[54] Trí, T. T. The irreducible modular representations of parabolic subgroups of general linear groups, Comm. Algebra, Volume 26 (1998), pp. 41-47 | DOI | MR | Zbl

[55] Wang, J. S. P. On the cohomology of the mod 2 Steenrod algebra and the nonexistence of elements of Hopf invariant one, Illinois J. Math., Volume 11 (1967), pp. 480-490 | MR | Zbl

[56] Wilkerson, C. Classifying spaces, Steenrod operations and algebraic closure, Topology, Volume 16 (1977), pp. 227-237 | DOI | MR | Zbl

[57] Wood, R. M. W. Steenrod squares of polynomials, London Math. Soc. Lecture Note Ser., Volume 139 (1989), pp. 173-177 | MR | Zbl

[58] Wood, R. M. W. Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc., Volume 105 (1989), pp. 307-309 | DOI | MR | Zbl

[59] Wood, R. M. W. Problems in the Steenrod algebra, Bull. London Math. Soc., Volume 146 (1998), pp. 449-517 | DOI | MR | Zbl

[60] Yoneda, N. Notes on products in Ext, Proc. Amer. Math. Soc., Volume 9 (1958), pp. 873-875 | MR | Zbl

[61] Zachariou, A. A subalgebra of Ext 𝒜 ** ( 2 , 2 ), Bull. London Math. Soc., Volume 73 (1967), pp. 647-648 | MR | Zbl

[62] Zachariou, A. A polynomial subalgebra of the cohomology of the Steenrod algebra, Publ. Res. Inst. Math. Sci., Volume 9 ((1973/74), pp. 157-164 | DOI | MR | Zbl

Cité par Sources :