Raabe’s formula for p-adic gamma and zeta functions
[Formules de Raabe pour les fonctions gamma et zêta p-adiques]
Annales de l'Institut Fourier, Tome 58 (2008) no. 1, pp. 363-376.

La formule de Raabe classique donne la valeur de l’intégrale de la fonction log gamma d’Euler sur un intervalle de longueur 1. Nous calculons des intégrales p-adiques analogues pour les fonctions log gamma p-adiques de Diamond et de Morita, et nous montrons que chacune de ces fonctions est caractérisée de manière unique par son équation fonctionnelle et sa formule de Raabe p-adique. Nous démontrons aussi une formule de type Raabe pour les fonctions zêta de Hurwitz p-adiques.

The classical Raabe formula computes a definite integral of the logarithm of Euler’s Γ-function. We compute p-adic integrals of the p-adic logΓ-functions, both Diamond’s and Morita’s, and show that each of these functions is uniquely characterized by its difference equation and p-adic Raabe formula. We also prove a Raabe-type formula for p-adic Hurwitz zeta functions.

DOI : 10.5802/aif.2353
Classification : 11S80, 11S40
Mots clés : $p$-adic gamma function, $p$-adic zeta function, Raabe’s formula

Cohen, Henri 1 ; Friedman, Eduardo 2

1 Université Bordeaux I Institut de Mathématiques U.M.R. 5251 du C.N.R.S. 351 Cours de la Libération, 33405 Talence Cedex (France)
2 Universidad de Chile Facultad de Ciencias Departamento de Matemática Casilla 653 Santiago (Chile)
@article{AIF_2008__58_1_363_0,
     author = {Cohen, Henri and Friedman, Eduardo},
     title = {Raabe{\textquoteright}s formula for $p$-adic gamma and zeta functions},
     journal = {Annales de l'Institut Fourier},
     pages = {363--376},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {1},
     year = {2008},
     doi = {10.5802/aif.2353},
     mrnumber = {2401225},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2353/}
}
TY  - JOUR
AU  - Cohen, Henri
AU  - Friedman, Eduardo
TI  - Raabe’s formula for $p$-adic gamma and zeta functions
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 363
EP  - 376
VL  - 58
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2353/
DO  - 10.5802/aif.2353
LA  - en
ID  - AIF_2008__58_1_363_0
ER  - 
%0 Journal Article
%A Cohen, Henri
%A Friedman, Eduardo
%T Raabe’s formula for $p$-adic gamma and zeta functions
%J Annales de l'Institut Fourier
%D 2008
%P 363-376
%V 58
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2353/
%R 10.5802/aif.2353
%G en
%F AIF_2008__58_1_363_0
Cohen, Henri; Friedman, Eduardo. Raabe’s formula for $p$-adic gamma and zeta functions. Annales de l'Institut Fourier, Tome 58 (2008) no. 1, pp. 363-376. doi : 10.5802/aif.2353. https://aif.centre-mersenne.org/articles/10.5802/aif.2353/

[1] Andrews, G.; Askey, R.; Roy, R. Special Functions, Cambridge University Press, Cambridge, 2000 | MR | Zbl

[2] Diamond, J. The p-adic log gamma function and p-adic Euler constants, Trans. Amer. Math. Soc., Volume 233 (1977), pp. 321-337 | MR | Zbl

[3] Friedman, E.; Ruijsenaars, S. N. M. Shintani-Barnes zeta and gamma functions, Adv. in Math., Volume 187 (2004), pp. 362-395 | DOI | MR | Zbl

[4] Morita, Y. A p-adic analogue of the Γ-function, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 22 (1975), pp. 255-266 | MR | Zbl

[5] Morita, Y. On the Hurwitz-Lerch L-functions, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 24 (1977), pp. 29-43 | MR | Zbl

[6] Nielsen, N. Handbuch der Theorie der Gammafunktion, Chelsea, New York, 1965 (reprint of 1906 edition)

[7] Robert, A. A Course in p -adic Analysis, Springer-Verlag, Berlin, 2000 | MR | Zbl

[8] Schikhof, W. H. An Introduction to Ultrametric Calculus, Cambridge, Cambridge University Press, 1984 | MR | Zbl

[9] Washington, L. A note on p-adic L-functions, J. Number Theory, Volume 8 (1976), pp. 245-250 | DOI | MR | Zbl

[10] Washington, L. Introduction to Cyclotomic Fields, Springer-Verlag, Berlin, 1982 | MR | Zbl

Cité par Sources :