Vecteurs distributions H-invariants de représentations induites, pour un espace symétrique réductif p-adique G/H.
Annales de l'Institut Fourier, Tome 58 (2008) no. 1, pp. 213-261.

Soit G le groupe des points sur 𝔽 d’un groupe réductif linéaire défini sur 𝔽, un corps local non archimédien de caractéristique 0. Soit σ une involution rationnelle de ce groupe algébrique définie sur 𝔽 et soit H le groupe des points sur 𝔽 d’un sous-groupe ouvert, défini sur 𝔽, du groupe des points fixes de σ. Nous construisons des familles de vecteurs H-invariants dans le dual de séries principales généralisées, en utilisant l’homologie des groupes. Des résultats de A.G.Helminck, S.P.Wang et A.G.Helminck, G.F.Helminck sur la structure des espaces symétriques réductifs p-adiques sont aussi essentiels.

Let G be the group of 𝔽-points of a linear reductive group defined over 𝔽, a non archimedean local field of characteristic zero. Let σ be a rational involution of this group defined over 𝔽 and let H be the group of 𝔽-points of an open subgroup, defined over 𝔽, of the group of fixed points by σ. We built rational families of H-fixed vectors in the dual of generalized principal series, using homology of groups. Results of A.G.Helminck, S.P.Wang and A.G.Helminck, G.F.Helminck on the structure of p-adic reductive symmetric spaces are also essential.

DOI : 10.5802/aif.2349
Classification : 22E35
Mot clés : symmetric spaces, reductive p-adic groups, distribution vectors, induced representations
Keywords: espaces symétriques, groupes réductifs $p$-adiques, vecteurs distributions, représentations induites

Blanc, Philippe 1 ; Delorme, Patrick 

1 Université de la Méditerranée Institut de Mathématiques de Luminy UMR 6206 CNRS 163 Avenue de Luminy Case 907 13288 Marseille Cedex 09 (France)
@article{AIF_2008__58_1_213_0,
     author = {Blanc, Philippe and Delorme, Patrick},
     title = {Vecteurs distributions $H$-invariants de repr\'esentations induites, pour un espace sym\'etrique r\'eductif $p$-adique $G/H$.},
     journal = {Annales de l'Institut Fourier},
     pages = {213--261},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {1},
     year = {2008},
     doi = {10.5802/aif.2349},
     mrnumber = {2401221},
     zbl = {1151.22012},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2349/}
}
TY  - JOUR
AU  - Blanc, Philippe
AU  - Delorme, Patrick
TI  - Vecteurs distributions $H$-invariants de représentations induites, pour un espace symétrique réductif $p$-adique $G/H$.
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 213
EP  - 261
VL  - 58
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2349/
DO  - 10.5802/aif.2349
LA  - fr
ID  - AIF_2008__58_1_213_0
ER  - 
%0 Journal Article
%A Blanc, Philippe
%A Delorme, Patrick
%T Vecteurs distributions $H$-invariants de représentations induites, pour un espace symétrique réductif $p$-adique $G/H$.
%J Annales de l'Institut Fourier
%D 2008
%P 213-261
%V 58
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2349/
%R 10.5802/aif.2349
%G fr
%F AIF_2008__58_1_213_0
Blanc, Philippe; Delorme, Patrick. Vecteurs distributions $H$-invariants de représentations induites, pour un espace symétrique réductif $p$-adique $G/H$.. Annales de l'Institut Fourier, Tome 58 (2008) no. 1, pp. 213-261. doi : 10.5802/aif.2349. https://aif.centre-mersenne.org/articles/10.5802/aif.2349/

[1] Bernstein, I. N.; Zelevinsky, A. V. Induced representations of reductive 𝔭-adic groups. I, Annales Scientifiques de l’École Normale Supérieure (1977), pp. 441-472 (Sér. 4, 10) | Numdam | Zbl

[2] Blanc, P. Projectifs dans la catégorie des G-modules topologiques, C.R.Acad.Sc.Paris (1979), pp. 161-163 (t.289) | MR | Zbl

[3] Blanc, P.; Brylinski, J-L Cyclic homology and the Selberg principle, J. Funct. Anal. (1992), pp. 289-330 (109) | DOI | MR | Zbl

[4] Borel, A.; Tits, J. Groupes réductifs, Publications Mathématiques de l’IHES (1965), pp. 55-151 (27) | DOI | Numdam | Zbl

[5] Borel, A.; Wallach, N. Continuous cohomology, discrete subgroups, and representations of reductive groups, Mathematical Surveys and Monographs, 67, American Mathematical Society, Providence, RI, 2000 (Second edition) | MR | Zbl

[6] Brylinski, J.L.; Delorme, P. Vecteurs distributions H-invariants pour les séries principales généralisées d’espaces symétriques réductifs et prolongement méromorphe d’intégrales d’Eisenstein, Invent. Math. (1992), pp. 619-664 (109) | DOI | Zbl

[7] Carmona, J.; Delorme, P. Base méromorphe de vecteurs distributions H-invariants pour les séries principales généralisées d’espaces symétriques réductifs : équation fonctionnelle, J. Funct. Anal. (1994), pp. 152-221 (122) | DOI | Zbl

[8] Cartan, H.; Eilenberg, S. Homological algebra, Princeton Univ. Press, 1956 | MR | Zbl

[9] Casselman, W. A new nonunitarity argument for p-adic representations, J. Fac. Sci. Univ. Tokyo (1982), pp. 907-928 (28) | MR | Zbl

[10] Delorme, P. Harmonic analysis on real reductive symmetric spaces, Proceedings of the International Congress of Mathematicians, Volume II (2002), pp. 545-554 (Higher Ed. Press, Beijing) | MR | Zbl

[11] Guichardet, A. Cohomologie des groupes topologiques et des algèbres de Lie, CEDIC, Paris, 1980 | MR | Zbl

[12] Helminck, A. G.; Helminck, G. F. A class of parabolic k-subgroups associated with symmetric k-varieties, Trans. Amer. Math. Soc. (1998), pp. 4669-4691 (350) | DOI | Zbl

[13] Helminck, A. G.; Wang, S. P. On rationality properties of involutions of reductive groups, Adv. Math. (1993), pp. 26-96 (99) | DOI | MR | Zbl

[14] Hironaka, Y. Spherical functions and local densities on Hermitian forms, J. Math Soc. Japan (1999), pp. 553-581 (51) | DOI | MR | Zbl

[15] Hironaka, Y.; Sato, F. Spherical functions and local densities of alternating forms, Am. J. Math. (1988), pp. 473-512 (110) | DOI | MR | Zbl

[16] Humphreys, J.E. Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975 | MR | Zbl

[17] Humphreys, J.E. Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York-Berlin, 1978 (Second printing, revised) | MR | Zbl

[18] Michael, E. Selected selection theorems, Amer. Math. Monthly (1956), pp. 223-238 (63) | MR | Zbl

[19] Offen, O. Relative spherical functions on -adic symmetric spaces (three cases), Pacific J. Math. (2004) no. 1, pp. 97-149 (215) | DOI | MR | Zbl

[20] Offen, O.; Sayag, E. On unitary distinguished representations of GL 2n distinguished by the symplectic group (preprint)

[21] Olafsson, G. Fourier and Poisson transformation associated to a semisimple symmetric space, Invent. Math. (1987), pp. 605-629 (90) | DOI | MR | Zbl

[22] Richardson, R.W. Orbits, invariants and representations associated to involutions of reductive groups, Invent. Math. (1982), pp. 287-312 (66) | DOI | MR | Zbl

[23] Waldspurger, J.-L. La formule de Plancherel pour les groupes p-adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu (2003), pp. 235-333 (2) | DOI | Zbl

Cité par Sources :